Feeds:
Posts
Comments

Posts Tagged ‘gene trap mutagenesis’

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

With the completion of the mapping of the human genome, we now have access to all the DNA sequence information responsible for human biology. Together with microarray technology, we are ushering in a new era in reproductive medicine—the era of Reproductive Genomics.

Whole genome microarray analysis of the testis and ovary suggests that a substantial part of the genome is expressed in reproductive tissues and many of them are likely to be important for normal reproduction. Yet adequate expression and functional information is only available for less than 10% of them. Hence, one of the important questions in reproductive studies now is ‘how do we associate function with the genes expressed in reproductive tissues?’ The establishment of mutations in animal models such as the mouse represents one powerful approach to address this question.

Animal models have played critical roles in improving our understanding of mechanisms and pathogenesis of diseases. Mouse knockout models have often provided highly needed functional validation of genes implicated in human diseases. The rapid advance of human genetics in areas such as

  • single nucleotide polymorphisms (SNP) and
  • haplotyping technology

now allows the identification of disease-associated single nucleotide variation at a much faster pace. Functional examination of those candidate genes is needed to determine if those genes or variants are indeed involved in reproductive disease. Generating mutations in murine homologs of candidate genes represents a direct way to determine their roles, and mouse models will further allow the dissection of genetic pathways underlying the disease condition and provide models to test possible drug treatments. Thus, how to generate mouse models efficiently becomes a priority issue in the Genomics era of Reproductive Medicine.

It is known that generating a mouse knockout is no small endeavor, even for a mouse research lab, often requiring specialized expertise and experience in

  • molecular biology,
  • embryonic stem (ES) biology and
  • mouse husbandry.

Therefore, it could be intimidating for people who have little experience in mouse research. Fortunately, there are some technological developments in the mouse community that make the task of generating mouse mutations less intimidating to people unfamiliar with mouse genetics. One of these developments is the effort led by the International Gene Trap Consortium (IGTC) to generate a library of mouse mutant ES cells covering most of the genes in the mouse genome. This method saves researchers the tedious and sometimes challenging tasks of making knockout vectors and screening ES cell colonies and directly provides researchers an ES cell clone carrying the mutation of the gene of interest.

Because gene trapping involves the use of different mechanisms in generating mutations from the traditional knockout method, and its efficacy in targeting reproductive genes which often are expressed in later development or adult has not been fully established, it is necessary to examine the benefits and limitations of this technology, especially in the perspective of reproductive medicine so that reproductive researchers and physicians who are interested in mouse models could become familiar with this technology.

With this in mind, we provide an overview of the gene trapping mutagenesis method and its possible application to Reproductive Medicine. We evaluate gene trapping as a method in terms of its efficiency in comparison with traditional knockout methods and use an in-house software program to screen the IGTC database for existing cell lines with possible mutations in genes expressed in various reproductive tissues. Among over seven thousand genes highly expressed in human ovaries, almost half of them have existing gene trap lines.

Additionally, from 900 human seminal fluid proteins, 43% of them have gene trap hits in their mouse homologs. Our analysis suggests gene trapping is an effective mutagenesis method for identifying the genetic basis of reproductive diseases and many mutations for important reproductive genes are already present in the database. Given the rapid growth of the number of gene trap lines, the continuing evolution of gene trap vectors, and its easy accessibility to scientific communities, gene trapping could provide a fast and efficient way of generating mouse mutation(s) for any one particular gene of interest or multiple genes involved in a pathway at the same time. Consequently, we recommend gene trapping to be considered in the planning of mouse modeling of human reproductive disease and the IGTC be the first stop for people interested in searching for and generating mouse mutations of genes of interest.

Gene trapping is a high-throughput approach of generating mutations in murine ES cells through vectors that simultaneously disrupt and report the expression of the endogenous gene at the point of insertion. First-generation vectors trapped genes that were actively transcribed in undifferentiated ES cells. Depending on the areas in which they integrate, these vectors can be roughly divided into two classes:

  • promoter trap vectors and
  • gene trap vectors.

Promoter trap vectors contain promoterless reporter regions, usually bgeo (a fusion of neomycin phosphotransferase and b-galactosidase), and thus have to be integrated into an exon of a transcriptionally active locus in order for the cell to be selected for neomycin resistance or by LacZ staining. Gene trap vectors demonstrate more utility by their added ability to integrate into an intron. These vectors contain a splice acceptor (SA) site positioned at the 50-end of the reporter gene, allowing the vector to be spliced to the endogenous gene to form a fusion transcript. Later improvements include an internal ribosomal re-entry site (IRES) between the SA site and the reporter gene sequence; as a result, the reporter gene can be translated even when it is not fused to the trapped gene. Second-generation vectors have sought to trap genes that are transcriptionally silent in ES cells. Although these vectors still contain a promoterless reporter gene with a 50 SA sequence, the antibiotic resistance gene is under the control of a constitutive promoter. Consequently, antibiotic selection is independent from the expression of the trapped gene, whereas the expression of the reporter gene is still regulated by the endogenous promoter.

A disadvantage of these vectors is that all integration events give rise to resistant ES cells regardless of whether or not the vector has integrated into a gene locus. To increase trapping efficiency, a new class of polyA gene trap vectors was developed where the polyadenylation signal of the neo gene was replaced by a splice donor sequence, thereby requiring the vector to trap an endogenous polyA signal for expression of neo. These vectors were recently shown to have a bias toward insertion near the 30-end of a gene due to nonsense-mediated mRNA decay of the fusion transcript. An improved polyA trap vector, UPATrap, was developed to overcome this bias using an IRES sequence placed downstream of a marker containing a termination codon. Gene trap vectors are usually introduced by retroviral infection or electroporation of plasmid DNA, with each approach having its own advantages and disadvantages.

While relatively difficult to manipulate, retroviral gene traps display a preference toward insertion at the 50-end of genes, which is advantageous for generating null alleles. Moreover, the multiplicity of infection with retroviruses can be tightly controlled to a single trap event or simultaneous disruption in many genes. However, there may be a possible bias integration toward certain ‘hotspots’ of the genome.

In contrast, plasmid-based gene trap vectors integrate more randomly into the genome. This can, however, potentially result in a functional partial protein and a hypomorphic phenotype. Additionally, plasmid vectors usually result in multiple integrations in 20–50% of cell lines. The most common approach for identifying the gene trap integration site is to use 50 or 30 rapid amplification of cDNA ends (RACE) to amplify the fusion transcript. The sequence provides a DNA tag for the identification of the disrupted gene and can be used for genotypic screens. Mutagenesis screens can also be performed on the basis of gene function or expression, and data from an expression sequence combined with sequence tag information can elucidate novel expression patterns of known genes or to suggest gene function.

Gene trapping has proven to be an efficacious technique in mutagenesis compared with other methods such as

  • spontaneous mutations,
  • fortuitous transgene integration and
  • N-ethyl-N-nitrosurea (ENU) mutagenesis

We have been able to use our SpiderGene program to identify genes in reproductive tissues that are present in the IGTC database and moreover to narrow down those with restricted expression in the testis and ovary. Gene trapping possesses an enormous potential for researchers in the reproductive field seeking to create mouse models for a gene mutation. The improving versatility of gene trap vectors has enabled groups to trap an increasing number of genes in various organisms, including Arabidopsis, Zebra fish and Drosophila.

The gene trap effort has perhaps been the most extensive in the murine genome, with over 57000 cell lines representing more than 40% of the known genome. These large-scale screens will likely achieve the trapping of the entire mouse genome in the coming years, but the power of gene trapping will only be fully demonstrated by its usefulness in investigator-driven focused functional analyses.

In our laboratory, future work will focus on generating knockout mice in order to investigate gene function and to identify gene products that might have therapeutic value in reproduction. As screening efforts continue, gene trapping will continue to be a valuable tool in mouse genomics and will undoubtedly yield new discoveries in Reproductive Physiology and Pathology.

Source References:

http://www.ncbi.nlm.nih.gov/pubmed?term=Gene%20trap%20mutagenesis%3A%20a%20functional%20genomics%20approach%20towards%20reproductive%20research

 

Read Full Post »