Feeds:
Posts
Comments

Posts Tagged ‘infection’


Curator and Reporter: Aviral Vatsa PhD, MBBS

Based on: A review by Wink et al., 2011

This is the first part of a two part post

Nitric oxide (NO), reactive nitrogen species (RNS) and reactive oxygen species (ROS) perform dual roles as immunotoxins and immunomodulators. An incoming immune signal initiates NO and ROS production both for tackling the pathogens and modulating the downstream immune response via complex signaling pathways. The complexity of these interactions is a reflection of involvement of redox chemistry in biological setting (fig. 1)

Fig 1. Image credit: (Wink et al., 2011)

Previous studies have highlighted the role of NO in immunity. It was shown that macrophages released a substance that had antitumor and antipathogen activity and required arginine for its production (Hibbs et al., 1987, 1988). Hibbs and coworkers further strengthened the connection between immunity and NO by demonstrating that IL2 mediated immune activation increased NO levels in patients and promoted tumor eradication in mice (Hibbs et al., 1992; Yim et al., 1995).

In 1980s a number of authors showed the direct evidence that macrophages made nitrite, nitrates and nitrosamines. It was also shown that NO generated by macrophages could kill leukemia cells (Stuehr and Nathan, 1989). Collectively these studies along with others demonstrated the important role NO plays in immunity and lay the path for further research in understanding the role of redox molecules in immunity.

NO is produced by different forms of nitric oxide synthase (NOS) enzymes such as eNOS (endothelial), iNOS (inducible) and nNOS (neuronal). The constitutive forms of eNOS generally produce NO in short bursts and in calcium dependent manner. The inducible form produces NO for longer durations and is calcium independent. In immunity, iNOS plays a vital role. NO production by iNOS can occur over a wide range of concentrations from as little as nM to as much as µM. This wide range of NO concentrations provide iNOS with a unique flexibility to be functionally effective in various conditions and micro-environements and thus provide different temporal and concentration profiles of NO, that can be highly efficient in dealing with immune challenges.

Redox reactions in immune responses

NO/RNS and ROS are two categories of molecules that bring about immune regulation and ‘killing’ of pathogens. These molecules can perform independently or in combination with each other. NO reacts directly with transition metals in heme or cobalamine, with non-heme iron, or with reactive radicals (Wink and Mitchell, 1998). The last reactivity also imparts it a powerful antioxidant capability. NO can thus act directly as a powerful antioxidant and prevent injury initiated by ROS (Wink et al., 1999). On the other hand, NO does not react directly with thiols or other nucleophiles but requires activation with superoxide to generate RNS. The RNS species then cause nitrosative and oxidative stress (Wink and Mitchell, 1998).

The variety of functions achieved by NO can be understood if one looks at certain chemical concepts. NO and NO2 are lipophilic and thus can migrate through cells, thus widening potential target profiles. ONOO-, a RNS, reacts rapidly with CO2 that shortens its half life to <10 ms. The anionic form and short half life limits its mobility across membranes. When NO levels are higher than superoxide levels, the CO2-OONOintermediate is converted to NO2 and N2O3 and changes the redox profile from an oxidative to a nitrosative microenvironment. The interaction of NO and ROS determines the bioavailability of NO and proximity of RNS generation to superoxide source, thus defining a reaction profile. The ROS also consumes NO to generate NO2 and N2O3 as well as nitrite in certain locations. The combination of these reactions in different micro-environments provides a vast repertoire of reaction profiles for NO/RNS and ROS entities.

The Phagosome ‘cauldron’

The phagosome provides an ‘isolated’ environment for the cell to carry out foreign body ‘destruction’. ROS, NO and RNS interact to bring about redox reactions. The concentration of NO in a phagosome can depend on the kind of NOS in the vicinity and its activity and other localised cellular factors. NO and is metabolites such as nitrites and nitrates along with ROS combine forces to kill pathogens in the acidic environment of the phagosome as depicted in the figure 2 below.

Fig 2. The NO chemistry of the phagosome. (image credit: (Wink et al., 2011)

This diagram depicts the different nitrogen oxide and ROS chemistry that can occur within the phagosome to fight pathogens. The presence of NOX2 in the phagosomes serves two purposes: one is to focus the nitrite accumulation through scavenging mechanisms, and the second provides peroxide as a source of ROS or FA generation. The nitrite (NO2−) formed in the acidic environment provides nitrosative stress with NO/NO2/N2O3. The combined acidic nature and the ability to form multiple RNS and ROS within the acidic environment of the phagosome provide the immune response with multiple chemical options with which it can combat bacteria.

Bacteria

There are various ways in which NO combines forces with other molecules to bring about bacterial killing. Here are few examples

E.coli: It appears to be resistant to individual action of NO/RNS and H2O2 /ROS. However, when combined together, H2O2 plus NO mediate a dramatic, three-log increase in cytotoxicity, as opposed to 50% killing by NO alone or H2O2 alone. This indicates that these bacteria are highly susceptible to their synergistic action.

Staphylococcus: The combined presence of NO and peroxide in staphylococcal infections imparts protective effect. However, when these bacteria are first exposed to peroxide and then to NO there is increased toxicity. Hence a sequential exposure to superoxide/ROS and then NO is a potent tool in eradicating staphylococcal bacteria.

Mycobacterium tuberculosis: These bacterium are sensitive to NO and RNS, but in this case, NO2 is the toxic species. A phagosome microenvironment consisting of ROS combined with acidic nitrite generates NO2/N2O3/NO, which is essential for pathogen eradication by the alveolar macrophage. Overall, NO has a dual function; it participates directly in killing an organism, and/or it disarms a pathway used by that organism to elude other immune responses.

Parasites

Many human parasites have demonstrated the initiation of the immune response via the induction of iNOS, that then leads to expulsion of the parasite. The parasites include Plasmodia(malaria), Leishmania(leishmaniasis), and Toxoplasma(toxoplasmosis). Severe cases of malaria have been related with increased production of NO. High levels of NO production are however protective in these cases as NO was shown to kill the parasites (Rockett et al., 1991; Gyan et al., 1994). Leishmania is an intracellualr parasite that resides in the mamalian macrophages. NO upregulation via iNOS induction is the primary pathway involved in containing its infestation. A critical aspect of NO metabolism is that NOHA inhibits AG activity, thereby limiting the growth of parasites and bacteria including Leishmania, Trypanosoma, Schistosoma, HelicobacterMycobacterium, and Salmonella, and is distinct from the effects of RNS. Toxoplasma gondii is also an intracellular parasite that elicits NO mediated response. INOS knockout mice have shown more severe inflammatory lesions in the CNS that their wild type counterparts, in response to toxoplasma exposure. This indicates the CNS preventative role of iNOS in toxoplasmosis (Silva et al., 2009).

Virus

Viral replication can be checked by increased production of NO by induction of iNOS (HIV-1, coxsackievirus, influenza A and B, rhino virus, CMV, vaccinia virus, ectromelia virus, human herpesvirus-1, and human parainfluenza virus type 3) (Xu et al., 2006). NO can reduce viral load, reduce latency and reduce viral replication. One of the main mechanisms as to how NO participates in viral eradication involves the nitrosation of critical cysteines within key proteins required for viral infection, transcription, and maturation stages. For example, viral proteases or even the host caspases that contain cysteines in their active site are involved in the maturation of the virus. The nitrosative stress environment produced by iNOS may serve to protect against some viruses by inhibiting viral infectivity, replication, and maturation.

To be continued in part 2 …

Bibliography

Gyan, B., Troye-Blomberg, M., Perlmann, P., Björkman, A., 1994. Human monocytes cultured with and without interferon-gamma inhibit Plasmodium falciparum parasite growth in vitro via secretion of reactive nitrogen intermediates. Parasite Immunol. 16, 371–3

Hibbs, J.B., Jr, Taintor, R.R., Vavrin, Z., 1987. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473–476.

Hibbs, J.B., Jr, Taintor, R.R., Vavrin, Z., Rachlin, E.M., 1988. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94.

Hibbs, J.B., Jr, Westenfelder, C., Taintor, R., Vavrin, Z., Kablitz, C., Baranowski, R.L., Ward, J.H., Menlove, R.L., McMurry, M.P., Kushner, J.P., 1992. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleu

Rockett, K.A., Awburn, M.M., Cowden, W.B., Clark, I.A., 1991. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun 59, 3280–3283.

Stuehr, D.J., Nathan, C.F., 1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543–1555.

Wink, D.A., Hines, H.B., Cheng, R.Y.S., Switzer, C.H., Flores-Santana, W., Vitek, M.P., Ridnour, L.A., Colton, C.A., 2011. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89, 873–891.

Wink, D.A., Mitchell, J.B., 1998. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25, 434–456.

Wink, D.A., Vodovotz, Y., Grisham, M.B., DeGraff, W., Cook, J.C., Pacelli, R., Krishna, M., Mitchell, J.B., 1999. Antioxidant effects of nitric oxide. Meth. Enzymol. 301, 413–424.

Xu, W., Zheng, S., Dweik, R.A., Erzurum, S.C., 2006. Role of epithelial nitric oxide in airway viral infection. Free Radic. Biol. Med. 41, 19–28.

Yim, C.Y., McGregor, J.R., Kwon, O.D., Bastian, N.R., Rees, M., Mori, M., Hibbs, J.B., Jr, Samlowski, W.E., 1995. Nitric oxide synthesis contributes to IL-2-induced antitumor responses against intraperitoneal Meth A tumor. J. Immunol. 155, 4382–4390.

Further reading on NO:

Nitric Oxide in bone metabolism July 16, 2012

Author: Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/07/16/nitric-oxide-in-bone-metabolism/?goback=%2Egde_4346921_member_134751669

Nitric Oxide production in Systemic sclerosis July 25, 2012

Curator: Aviral Vatsa, PhD, MBBS

https://pharmaceuticalintelligence.com/2012/07/25/nitric-oxide-production-in-systemic-sclerosis/?goback=%2Egde_4346921_member_138370383

Nitric Oxide Signalling Pathways August 22, 2012 by

Curator/ Author: Aviral Vatsa, PhD, MBBS

https://pharmaceuticalintelligence.com/2012/08/22/nitric-oxide-signalling-pathways/?goback=%2Egde_4346921_member_151245569

Nitric Oxide: a short historic perspective August 5, 2012

Author/Curator: Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/08/05/nitric-oxide-a-short-historic-perspective-7/

Nitric Oxide: Chemistry and function August 10, 2012

Curator/Author: Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/08/10/nitric-oxide-chemistry-and-function/?goback=%2Egde_4346921_member_145137865

Nitric Oxide and Platelet Aggregation August 16, 2012 by

Author: Dr. Venkat S. Karra, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/16/no-and-platelet-aggregation/?goback=%2Egde_4346921_member_147475405

The rationale and use of inhaled NO in Pulmonary Artery Hypertension and Right Sided Heart Failure August 20, 2012

Author: Larry Bernstein, MD

http://pharmaceuticalintelligence.com/2012/08/20/the-rationale-and-use-of-inhaled-no-in-pulmonary-artery-hypertension-and-right-sided-heart-failure/

Nitric Oxide: The Nobel Prize in Physiology or Medicine 1998 Robert F. Furchgott, Louis J. Ignarro, Ferid Murad August 16, 2012

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/16/nitric-oxide-the-nobel-prize-in-physiology-or-medicine-1998-robert-f-furchgott-louis-j-ignarro-ferid-murad/

Coronary Artery Disease – Medical Devices Solutions: From First-In-Man Stent Implantation, via Medical Ethical Dilemmas to Drug Eluting Stents August 13, 2012

Author: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/13/coronary-artery-disease-medical-devices-solutions-from-first-in-man-stent-implantation-via-medical-ethical-dilemmas-to-drug-eluting-stents/

Nano-particles as Synthetic Platelets to Stop Internal Bleeding Resulting from Trauma

August 22, 2012

Reported by: Dr. V. S. Karra, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/22/nano-particles-as-synthetic-platelets-to-stop-internal-bleeding-resulting-from-trauma/

Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production July 19, 2012

Curator and Research Study Originator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/

Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

July 2, 2012

An Investigation of the Potential of circulating Endothelial Progenitor Cells (cEPCs) as a Therapeutic Target for Pharmacological Therapy Design for Cardiovascular Risk Reduction: A New Multimarker Biomarker Discovery

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/07/02/macrovascular-disease-therapeutic-potential-of-cepcs-reduction-methods-for-cv-risk/

Bone remodelling in a nutshell June 22, 2012

Author: Aviral Vatsa, Ph.D., MBBS

https://pharmaceuticalintelligence.com/2012/06/22/bone-remodelling-in-a-nutshell/

Targeted delivery of therapeutics to bone and connective tissues: current status and challenges- Part, September  

Author: Aviral Vatsa, PhD, September 23, 2012

https://pharmaceuticalintelligence.com/2012/09/23/targeted-delivery-of-therapeutics-to-bone-and-connective-tissues-current-status-and-challenges-part-i/

Calcium dependent NOS induction by sex hormones: Estrogen

Curator: S. Saha, PhD, October 3, 2012

https://pharmaceuticalintelligence.com/2012/10/03/calcium-dependent-nos-induction-by-sex-hormones/

Nitric Oxide and Platelet Aggregation,

Author V. Karra, PhD, August 16, 2012

https://pharmaceuticalintelligence.com/2012/08/16/no-and-platelet-aggregation/

Bystolic’s generic Nebivolol – positive effect on circulating Endothelial Progenitor Cells endogenous augmentation

Curator: Aviva Lev-Ari, PhD, July 16, 2012

https://pharmaceuticalintelligence.com/?s=Nebivolol

Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation

Author: Aviva Lev-Ari, PhD, 10/4/2012

https://pharmaceuticalintelligence.com/2012/10/04/endothelin-receptors-in-cardiovascular-diseases-the-role-of-enos-stimulation/

Inhibition of ET-1, ETA and ETA-ETB, Induction of NO production, stimulation of eNOS and Treatment Regime with PPAR-gamma agonists (TZD): cEPCs Endogenous Augmentation for Cardiovascular Risk Reduction – A Bibliography

Curator: Aviva Lev-Ari, 10/4/2012.

https://pharmaceuticalintelligence.com/2012/10/04/inhibition-of-et-1-eta-and-eta-etb-induction-of-no-production-and-stimulation-of-enos-and-treatment-regime-with-ppar-gamma-agonists-tzd-cepcs-endogenous-augmentation-for-cardiovascular-risk-reduc/

Nitric Oxide Nutritional remedies for hypertension and atherosclerosis. It’s 12 am: do you know where your electrons are?

Author and Reporter: Meg Baker, 10/7/2012.

https://pharmaceuticalintelligence.com/2012/10/07/no-nutritional-remedies-for-hypertension-and-atherosclerosis-its-12-am-do-you-know-where-your-electrons-are/

 

Read Full Post »


Reported by: Dr. Venkat S. Karra, Ph.D.

Oral Cephalosporins No Longer a Recommended Treatment for Gonococcal Infections: an update to CDC‘s 2010 STD guidelines.

Gonorrhea is a major cause of serious reproductive complications in women and can facilitate human immunodeficiency virus (HIV) transmission (1). Effective treatment is a cornerstone of U.S. gonorrhea control efforts, but treatment of gonorrhea has been complicated by the ability of Neisseria gonorrhoeae to develop antimicrobial resistance. This report, using data from CDC’s Gonococcal Isolate Surveillance Project (GISP), describes laboratory evidence of declining cefixime susceptibility among urethral N. gonorrhoeae isolates collected in the United States during 2006–2011 and updates CDC’s current recommendations for treatment of gonorrhea (2). Based on GISP data, CDC recommends combination therapy with ceftriaxone 250 mg intramuscularly and either azithromycin 1 g orally as a single dose or doxycycline 100 mg orally twice daily for 7 days as the most reliably effective treatment for uncomplicated gonorrhea. CDC no longer recommends cefixime at any dose as a first-line regimen for treatment of gonococcal infections. If cefixime is used as an alternative agent, then the patient should return in 1 week for a test-of-cure at the site of infection.

Infection with N. gonorrhoeae is a major cause of pelvic inflammatory disease, ectopic pregnancy, and infertility, and can facilitate HIV transmission (1). In the United States, gonorrhea is the second most commonly reported notifiable infection, with >300,000 cases reported during 2011. Gonorrhea treatment has been complicated by the ability of N. gonorrhoeae to develop resistance to antimicrobials used for treatment. During the 1990s and 2000s, fluoroquinolone resistance in N. gonorrhoeae emerged in the United States, becoming prevalent in Hawaii and California and among men who have sex with men (MSM) before spreading throughout the United States. In 2007, emergence of fluoroquinolone-resistant N. gonorrhoeae in the United States prompted CDC to no longer recommend fluoroquinolones for treatment of gonorrhea, leaving cephalosporins as the only remaining recommended antimicrobial class (3). To ensure treatment of co-occurring pathogens (e.g., Chlamydia trachomatis) and reflecting concern about emerging gonococcal resistance, CDC’s 2010 sexually transmitted diseases (STDs) treatment guidelines recommended combination therapy for gonorrhea with a cephalosporin (ceftriaxone 250 mg intramuscularly or cefixime 400 mg orally) plus either azithromycin orally or doxycycline orally, even if nucleic acid amplification testing (NAAT) for C. trachomatis was negative at the time of treatment (2). From 2006 to 2010, the minimum concentrations of cefixime needed to inhibit the growth in vitro of N. gonorrhoeae strains circulating in the United States and many other countries increased, suggesting that the effectiveness of cefixime might be waning (4). Reports from Europe recently have described patients with uncomplicated gonorrhea infection not cured by treatment with cefixime 400 mg orally (5–8).

GISP is a CDC-supported sentinel surveillance system that has monitored N. gonorrhoeae antimicrobial susceptibilities since 1986, and is the only source in the United States of national and regional N. gonorrhoeae antimicrobial susceptibility data. During September–December 2011, CDC and five external GISP principal investigators, each with N. gonorrhoeae–specific expertise in surveillance, antimicrobial resistance, treatment, and antimicrobial susceptibility testing, reviewed antimicrobial susceptibility trends in GISP through August 2011 to determine whether to update CDC’s current recommendations (2) for treatment of uncomplicated gonorrhea. Each month, the first 25 gonococcal urethral isolates collected from men attending participating STD clinics (approximately 6,000 isolates each year) were submitted for antimicrobial susceptibility testing. The minimum inhibitory concentration (MIC), the lowest antimicrobial concentration that inhibits visible bacterial growth in the laboratory, is used to assess antimicrobial susceptibility. Cefixime susceptibilities were not determined during 2007–2008 because cefixime temporarily was unavailable in the United States at that time. Criteria for resistance to cefixime and ceftriaxone have not been defined by the Clinical Laboratory Standards Institute (CLSI). However, CLSI does consider isolates with cefixime or ceftriaxone MICs ≥0.5 µg/mL to have “decreased susceptibility” to these drugs (9). During 2006–2011, 15 (0.1%) isolates had decreased susceptibility to cefixime (all had MICs = 0.5 µg/mL), including nine (0.2%) in 2010 and one (0.03%) during January–August 2011; 12 of 15 were from MSM, and 12 were from the West and three from the Midwest.* No isolates exhibited decreased susceptibility to ceftriaxone. Because increasing MICs can predict the emergence of resistance, lower cephalosporin MIC breakpoints were established by GISP for surveillance purposes to provide greater sensitivity in detecting declining gonococcal susceptibility than breakpoints defined by CLSI. Cefixime MICs ≥0.25 µg/mL and ceftriaxone MICs ≥0.125 µg/mL were defined as “elevated MICs.” CLSI does not define azithromycin resistance criteria; CDC defines decreased azithromycin susceptibility as ≥2.0 µg/mL.

Evidence and Rationale

The percentage of isolates with elevated cefixime MICs (MICs ≥0.25 µg/mL) increased from 0.1% in 2006 to 1.5% during January–August 2011 (Figure). In the West, the percentage increased from 0.2% in 2006 to 3.2% in 2011 (Table). The largest increases were observed in Honolulu, Hawaii (0% in 2006 to 17.0% in 2011); Minneapolis, Minnesota (0% to 6.9%); Portland, Oregon (0% to 6.5%); and San Diego, California (0% to 6.4%). Nationally, among MSM, isolates with elevated MICs to cefixime increased from 0.2% in 2006 to 3.8% in 2011. In 2011, a higher proportion of isolates from MSM had elevated cefixime MICs than isolates from men who have sex exclusively with women (MSW), regardless of region (Table).

The percentage of isolates exhibiting elevated ceftriaxone MICs increased slightly, from 0% in 2006 to 0.4% in 2011 (Figure). The percentage increased from <0.1% in 2006 to 0.8% in 2011 in the West, and did not increase significantly in the Midwest (0% to 0.2%) or the Northeast and South (0.1% in 2006 and 2011). Among MSM, the percentage increased from 0.0% in 2006 to 1.0% in 2011.

The 2010 CDC STD treatment guidelines (2) recommend that azithromycin or doxycycline be administered with a cephalosporin as treatment for gonorrhea. The percentage of isolates exhibiting tetracycline resistance (MIC ≥2.0 µg/mL) was high but remained stable from 2006 (20.6%) to 2011 (21.6%). The percentage exhibiting decreased susceptibility to azithromycin (MIC ≥2.0 µg/mL) remained low (0.2% in 2006 to 0.3% in 2011). Among 180 isolates collected during 2006–2011 that exhibited elevated cefixime MICs, 139 (77.2%) exhibited tetracycline resistance, but only one (0.6%) had decreased susceptibility to azithromycin.

Ceftriaxone as a single intramuscular injection of 250 mg provides high and sustained bactericidal levels in the blood and is highly efficacious at all anatomic sites of infection for treatment of N. gonorrhoeae infections caused by strains currently circulating in the United States (10,11). Clinical data to support use of doses of ceftriaxone >250 mg are not available. A 400-mg oral dose of cefixime does not provide bactericidal levels as high, nor as sustained as does an intramuscular 250-mg dose of ceftriaxone, and demonstrates limited efficacy for treatment of pharyngeal gonorrhea (10,11). The significant increase in the prevalence of U.S. GISP isolates with elevated cefixime MICs, most notably in the West and among MSM, is of particular concern because the emergence of fluoroquinolone-resistant N. gonorrhoeae in the United States during the 1990s also occurred initially in the West and predominantly among MSM before spreading throughout the United States within several years. Thus, observed patterns might indicate early stages of the development of clinically significant gonococcal resistance to cephalosporins. CDC anticipates that rising cefixime MICs soon will result in declining effectiveness of cefixime for the treatment of urogenital gonorrhea. Furthermore, as cefixime becomes less effective, continued use of cefixime might hasten the development of resistance to ceftriaxone, a safe, well-tolerated, injectable cephalosporin and the last antimicrobial that is recommended and known to be highly effective in a single dose for treatment of gonorrhea at all anatomic sites of infection. Maintaining effectiveness of ceftriaxone for as long as possible is critical. Thus, CDC no longer recommends the routine use of cefixime as a first-line regimen for treatment of gonorrhea in the United States.

Based on experience with other microbes that have developed antimicrobial resistance rapidly, a theoretical basis exists for combination therapy using two antimicrobials with different mechanisms of action to improve treatment efficacy and potentially delay emergence and spread of resistance to cephalosporins. Therefore, the use of a second antimicrobial (azithromycin as a single 1-g oral dose or doxycycline 100 mg orally twice daily for 7 days) is recommended for administration with ceftriaxone. The use of azithromycin as the second antimicrobial is preferred to doxycycline because of the convenience and compliance advantages of single-dose therapy and the substantially higher prevalence of gonococcal resistance to tetracycline than to azithromycin among GISP isolates, particularly in strains with elevated cefixime MICs.

Recommendations

For treatment of uncomplicated urogenital, anorectal, and pharyngeal gonorrhea, CDC recommends combination therapy with a single intramuscular dose of ceftriaxone 250 mg plus either a single dose of azithromycin 1 g orally or doxycycline 100 mg orally twice daily for 7 days (Box).

Clinicians who diagnose gonorrhea in a patient with persistent infection after treatment (treatment failure) with the recommended combination therapy regimen should culture relevant clinical specimens and perform antimicrobial susceptibility testing of N. gonorrhoeae isolates. Phenotypic antimicrobial susceptibility testing should be performed using disk diffusion, Etest (BioMérieux, Durham, NC), or agar dilution. Data currently are limited on the use of NAAT-based antimicrobial susceptibility testing for genetic mutations associated with resistance in N. gonorrhoeae. The laboratory should retain the isolate for possible further testing. The treating clinician should consult an infectious disease specialist, an STD/HIV Prevention Training Center (http://www.nnptc.orgExternal Web Site Icon), or CDC (telephone: 404-639-8659) for treatment advice, and report the case to CDC through the local or state health department within 24 hours of diagnosis. A test-of-cure should be conducted 1 week after re-treatment, and clinicians should ensure that the patient’s sex partners from the preceding 60 days are evaluated promptly with culture and treated as indicated.

When ceftriaxone cannot be used for treatment of urogenital or rectal gonorrhea, two alternative options are available: cefixime 400 mg orally plus either azithromycin 1 g orally or doxycycline 100 mg twice daily orally for 7 days if ceftriaxone is not readily available, or azithromycin 2 g orally in a single dose if ceftriaxone cannot be given because of severe allergy. If a patient with gonorrhea is treated with an alternative regimen, the patient should return 1 week after treatment for a test-of-cure at the infected anatomic site. The test-of-cure ideally should be performed with culture or with a NAAT for N. gonorrhoeae if culture is not readily available. If the NAAT is positive, every effort should be made to perform a confirmatory culture. All positive cultures for test-of-cure should undergo phenotypic antimicrobial susceptibility testing. Patients who experience treatment failure after treatment with alternative regimens should be treated with ceftriaxone 250 mg as a single intramuscular dose and azithromycin 2 g orally as a single dose and should receive infectious disease consultation. The case should be reported to CDC through the local or state health department.

For all patients with gonorrhea, every effort should be made to ensure that the patients’ sex partners from the preceding 60 days are evaluated and treated for N. gonorrhoeae with a recommended regimen. If a heterosexual partner of a patient cannot be linked to evaluation and treatment in a timely fashion, then expedited partner therapy should be considered, using oral combination antimicrobial therapy for gonorrhea (cefixime 400 mg and azithromycin 1 g) delivered to the partner by the patient, a disease investigation specialist, or through a collaborating pharmacy.

The capacity of laboratories in the United States to isolate N. gonorrhoeae by culture is declining rapidly because of the widespread use of NAATs for gonorrhea diagnosis, yet it is essential that culture capacity for N. gonorrhoeae be maintained to monitor antimicrobial resistance trends and determine susceptibility to guide treatment following treatment failure. To help control gonorrhea in the United States, health-care providers must maintain the ability to collect specimens for culture and be knowledgeable of laboratories to which they can send specimens for culture. Health-care systems and health departments must support access to culture, and laboratories must maintain culture capacity or develop partnerships with laboratories that can perform culture.

Treatment of patients with gonorrhea with the most effective therapy will limit the transmission of gonorrhea, prevent complications, and likely will slow emergence of resistance. However, resistance to cephalosporins, including ceftriaxone, is expected to emerge. Reinvestment in gonorrhea prevention and control is warranted. New treatment options for gonorrhea are urgently needed.

Reported by

Carlos del Rio, MD, Rollins School of Public Health, Emory Univ, Atlanta, Georgia. Geraldine Hall, PhD, Dept of Clinical Pathology, Cleveland Clinic, Cleveland, Ohio. King Holmes, MD, Olusegun Soge, PhD, Dept of Medicine, Univ of Washington. Edward W. Hook, MD, Div of Infectious Diseases, Univ of Alabama at Birmingham. Robert D. Kirkcaldy, MD, Kimberly A. Workowski, MD, Sarah Kidd, MD, Hillard S. Weinstock, MD, John R. Papp, PhD, David Trees, PhD, Thomas A. Peterman, MD, Gail Bolan, MD, Div of Sexually Transmitted Diseases Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC.Corresponding contributor: Robert D. Kirkcaldy, rkirkcaldy@cdc.gov, 404-639-8659.

Acknowledgments

Collaborating state and local health departments. Baderinwa Offut, Emory Univ, Atlanta, Georgia. Laura Doyle, Cleveland Clinic, Ohio. Connie Lenderman, Paula Dixon, Univ of Alabama at Birmingham. Karen Winterscheid, Univ of Washington, Seattle. Tamara Baldwin, Elizabeth Delamater, Texas Dept of State Health Svcs. Alesia Harvey, Tremeka Sanders, Samera Bowers, Kevin Pettus, Div of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC.

References

  1. Fleming D, Wasserheit J. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 1999;75:3–17.
  2. CDC. Sexually transmitted diseases treatment guidelines, 2010. MMWR 2010;59(No. RR-12).
  3. CDC. Update to CDC’s sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR 2007;56:332–6.
  4. CDC. Cephalosporin susceptibility among Neisseria gonorrhoeae isolates—United States, 2000–2010. MMWR 2011;60:873–7.
  5. Unemo M, Golparian D, Syversen G, Vestrheim DF, Moi H. Two cases of verified clinical failures using internationally recommended first-line cefixime for gonorrhea treatment, Norway, 2010. Euro Surveill 2010;15(47):pii:19721.
  6. Ison C, Hussey J, Sankar K, Evans J, Alexander S. Gonorrhea treatment failures to cefixime and azithromycin in England, 2010. Euro Surveill 2011;16(14):pii:19833.
  7. Unemo M, Golparian D, Stary A, Eigentler A. First Neisseria gonorrhoeae strain with resistance to cefixime causing gonorrhea treatment failure in Austria, 2011. Euro Surveill 2011;16(43):pi:19998.
  8. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012;56:1273–80.
  9. National Committee for Clinical Laboratory Standards. Approved Standard M100-S20 performance standards for antimicrobial susceptibility testing; twentieth informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
  10. Moran JS, Levine WC. Drugs of choice for the treatment of uncomplicated gonococcal infections. Clin Infect Dis 1995;20(Suppl 1):S47–65.
  11. Handsfield HH, McCormack WM, Hook EW 3rd, et al. A comparison of single-dose cefixime with ceftriaxone as treatment for uncomplicated gonorrhea. The Gonorrhea Treatment Study Group. New Engl J Med 1991;325:1337–41.

* U.S. Census regions. Northeast: Connecticut, Maine, Massachusetts, New Jersey, New Hampshire, New York, Pennsylvania, Rhode Island, and Vermont; Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; South:Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washington, and Wyoming.

TABLE. Percentage of urethral Neisseria gonorrhoeae isolates with elevated cefixime MICs (≥0.25 µg/mL), by U.S. Census region and gender of sex partner — Gonococcal Isolate Surveillance Project, United States, 2006–August 2011
Region 2006 2009 2010 2011*
% (95% CI) % (95% CI) % (95% CI) % (95% CI)
West† (total) 0.2 (0.1–0.4) 1.9 (1.4–2.6) 3.3 (2.6–4.0) 3.2 (2.3–4.2)
MSM 0.1 (0.0–0.6) 2.6 (1.7–3.8) 5.0 (3.8–6.5) 4.5 (3.1–6.3)
MSW 0.2 (0.0–0.6) 1.4 (0.7–2.3) 1.3 (0.7–2.2) 1.8 (0.9–3.1)
Midwest§ (total) 0.0 (0.0–0.3) 0.5 (0.2–1.0) 0.5 (0.2–1.1) 0.6 (0.2–1.5)
MSM 0.0 (0.0–2.8) 2.3 (0.6–5.7) 3.4 (1.1–7.7) 4.9 (1.4–12.2)
MSW 0.0 (0.0–0.3) 0.3 (0.1–0.7) 0.1 (0.0–0.6) 0.0 (0.0–0.6)
Northeast and South¶ (total) 0.1 (0.0–0.3) 0.0 (0.0–0.2) 0.1 (0.0–0.4) 0.3 (0.1–0.8)
MSM 0.6 (0.0–3.0) 0.3 (0.0–1.9) 0.9 (0.2–2.5) 1.5 (0.4–3.9)
MSW 0.0 (0.0–0.2) 0.0 (0.0–0.2) 0.0 (0.0–0.2) 0.1 (0.0–0.4)
Abbreviations: CI = confidence interval; MICs = minimum inhibitory concentrations; MSM = men who have sex with men; MSW = men who have sex exclusively with women.

* January–August 2011.

† Includes data from Albuquerque, New Mexico; Denver, Colorado; Honolulu, Hawaii; Las Vegas, Nevada; Los Angeles, California; Orange County, California; Phoenix, Arizona; Portland, Oregon; San Diego, California; San Francisco, California; and Seattle, Washington.

§ Includes data from Chicago, Illinois; Cincinnati, Ohio; Cleveland, Ohio; Detroit, Michigan; Kansas City, Missouri; and Minneapolis, Minnesota.

¶ Includes data from Atlanta, Georgia; Baltimore, Maryland; Birmingham, Alabama; Dallas, Texas; Greensboro, North Carolina; Miami, Florida; New Orleans, Louisiana; New York, New York; Oklahoma City, Oklahoma; Philadelphia, Pennsylvania; and Richmond, Virginia.

FIGURE. Percentage of urethral Neisseria gonorrhoeae isolates (n = 32,794) with elevated cefixime MICs (≥0.25 µg/mL) and ceftriaxone MICs (≥0.125 µg/mL) — Gonococcal Isolate Surveillance Project, United States, 2006–August 2011

The figure shows the percentage of Neisseria gonorrhoeae isolates (n = 32,794) with elevated cefixime MICs (≥0.25 μg/mL) and ceftriaxone MICs (≥0.125 μg/mL) in the United States during 2006-August 2011, according to the Gonococcal Isolate Surveillance Project. The percentage of isolates with elevated cefixime MICs (MICs ≥0.25 μg/mL) increased from 0.1% in 2006 to 1.5% during January-August 2011.

Abbreviation: MICs = minimum inhibitory concentrations.

* Cefixime susceptibility not tested during 2007–2008.

† January–August 2011.

Alternate Text: The figure above shows the percentage of Neisseria gonorrhoeae isolates (n = 32,794) with elevated cefixime MICs (≥0.25 μg/mL) and ceftriaxone MICs (≥0.125 μg/mL) in the United States during 2006-August 2011, according to the Gonococcal Isolate Surveillance Project. The percentage of isolates with elevated cefixime MICs (MICs ≥0.25 μg/mL) increased from 0.1% in 2006 to 1.5% during January-August 2011.

BOX. Updated recommended treatment regimens for gonococcal infections
Uncomplicated gonococcal infections of the cervix, urethra, and rectum

Recommended regimen

Ceftriaxone 250 mg in a single intramuscular dose

PLUS

Azithromycin 1 g orally in a single dose

or doxycycline 100 mg orally twice daily for 7 days*

 

Alternative regimens

If ceftriaxone is not available:

Cefixime 400 mg in a single oral dose

PLUS

Azithromycin 1 g orally in a single dose

or doxycycline 100 mg orally twice daily for 7 days*

PLUS

Test-of-cure in 1 week

 

If the patient has severe cephalosporin allergy:

Azithromycin 2 g in a single oral dose

PLUS

Test-of-cure in 1 week

 

Uncomplicated gonococcal infections of the pharynx

Recommended regimen

Ceftriaxone 250 mg in a single intramuscular dose

PLUS

Azithromycin 1 g orally in a single dose

or doxycycline 100 mg orally twice daily for 7 days*

 

* Because of the high prevalence of tetracycline resistance among Gonococcal Isolate Surveillance Project isolates, particularly those with elevated

 

NOTE: THIS IS FOR YOUR INFORMATION ONLY, BUT “NOT A MEDICAL ADVISE”.

 

source

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6131a3.htm?s_cid=mm6131a3_w

 

 

Read Full Post »


Curator: Venkat Karra, Ph.D.

Cancer is a broad group of various diseases involving unregulated cell growth. It is medically known as a malignant neoplasm. In cancer, cells divide and grow uncontrollably and invade nearby parts of the body. The cancer may also spread to more distant parts of the body through the lymphatic system or bloodstream, it is called metastasis. However, not all tumors are cancerous. Some tumors do not grow uncontrollably, do not invade neighboring tissues, and do not spread throughout the body which are called Benign tumors.

There are more than 100 types of Cancers. Follow the link to know more:

http://www.cancer.gov/cancertopics/types/alphalist

Classification of Cancers:

There are five broad groups that are used to classify cancer.

  1. Carcinomas: These are characterized by cells that cover internal and external parts of the body such as lung, breast, and colon cancer.
  2. Sarcomas:These are characterized by cells that are located in bone, cartilage, fat, connective tissue, muscle, and other supportive tissues.
  3. Lymphomas:These are cancers that begin in the lymph nodes and immune system tissues.
  4. Leukemias:These are cancers that begin in the bone marrow and often accumulate in the bloodstream.
  5. Adenomas:These are cancers that arise in the thyroid, the pituitary gland, the adrenal gland, and other glandular tissues.

Causes

  • Hereditary (about 5-10%)
  • Environmental (90-95% of cases) factors e.g.,
  • Tobacco (25-30%) – about 70% of the lung cancers are due to tobacco habit
  • Infections (15-20%)
  • Radiation (both ionizing and non-ionizing, up to 10%)
  • Obesity (30-35%) and
  • Pollutants,Sedentary life, poor diet etc. are likely to cause cancer.

These can directly damage genes or combine with existing genetic faults within cells to cause the disease.

Detection

Presence of certain signs and symptoms, screening tests including medical imaging etc. can be used.

Diagnosis

Cancer can be diagnosed by microscopic examination of a tissue sample called biopsy.

Visit Link for details: http://cancer.stanford.edu/information/cancerDiagnosis/

Treatment

Cancer is usually treated with chemotherapy, radiation therapy and surgery.

Survival

Survival depends greatly by the type and location of the cancer and the extent of disease at the start of treatment. The risk of developing cancer generally increases with age.

Young People with Cancer, visit the following link for details:

http://www.cancer.gov/cancertopics/coping/youngpeople/page6

For Types of Childhood Cancer, visit the following link:

http://www.cancer.gov/cancertopics/coping/youngpeople/page13

For common medical procedures, visit the following link:
http://www.cancer.gov/cancertopics/coping/youngpeople/page6

Signs and Symptoms

Initially there will be no signs and symptoms but only appearing as the mass that continues to grow or ulcerates. The findings that result depends on the type and location of the cancer. For example,

Mass effects from Lung Cancer – can cause blockage of the bronchus resulting in cough (coughing up blood if there is ulceration) or pneumonia.

Oesophageal Cancer – can cause narrowing of the esophagus making it difficult or painful to swallow.

Colorectal Cancer – may lead to changes in bowel habits and bleeding leading to anemia.

General symptoms may include:

  • Unintentional weight loss,
  • Fever,
  • Being excessively tired,
  • Changes to the skin,
  • Hodgkin disease,
  • Leukemias, and
  • Persistent fever due to Cancers of the liver or kidney.

Symptoms of metastasis include:

  • Enlarged lynph nodes which can be felt or sometimes seen under the skin and are typically hard),
  • Enlarged liver or spleen which can be felt in the abdomen,
  • Pain or fracture of affected bones, and
  • Neurological symptoms.

It is nearly impossible to prove what caused a cancer in any individual, because most cancers have multiple possible causes. For example, lung cancer could be due to tobacco habbit or could be a result of air pollution or radiation.

Read Full Post »

« Newer Posts