Feeds:
Posts
Comments

Posts Tagged ‘Autologous stem cell transplant’


Treatments other than Chemotherapy for Leukemias and Lymphomas

Author, Curator, Editor: Larry H. Bernstein, MD, FCAP

2.5.1 Radiation Therapy 

http://www.lls.org/treatment/types-of-treatment/radiation-therapy

Radiation therapy, also called radiotherapy or irradiation, can be used to treat leukemia, lymphoma, myeloma and myelodysplastic syndromes. The type of radiation used for radiotherapy (ionizing radiation) is the same that’s used for diagnostic x-rays. Radiotherapy, however, is given in higher doses.

Radiotherapy works by damaging the genetic material (DNA) within cells, which prevents them from growing and reproducing. Although the radiotherapy is directed at cancer cells, it can also damage nearby healthy cells. However, current methods of radiotherapy have been improved upon, minimizing “scatter” to nearby tissues. Therefore its benefit (destroying the cancer cells) outweighs its risk (harming healthy cells).

When radiotherapy is used for blood cancer treatment, it’s usually part of a treatment plan that includes drug therapy. Radiotherapy can also be used to relieve pain or discomfort caused by an enlarged liver, lymph node(s) or spleen.

Radiotherapy, either alone or with chemotherapy, is sometimes given as conditioning treatment to prepare a patient for a blood or marrow stem cell transplant. The most common types used to treat blood cancer are external beam radiation (see below) and radioimmunotherapy.
External Beam Radiation

External beam radiation is the type of radiotherapy used most often for people with blood cancers. A focused radiation beam is delivered outside the body by a machine called a linear accelerator, or linac for short. The linear accelerator moves around the body to deliver radiation from various angles. Linear accelerators make it possible to decrease or avoid skin reactions and deliver targeted radiation to lessen “scatter” of radiation to nearby tissues.

The dose (total amount) of radiation used during treatment depends on various factors regarding the patient, disease and reason for treatment, and is established by a radiation oncologist. You may receive radiotherapy during a series of visits, spread over several weeks (from two to 10 weeks, on average). This approach, called dose fractionation, lessens side effects. External beam radiation does not make you radioactive.

2.5.2  Bone marrow (BM) transplantation

http://www.nlm.nih.gov/medlineplus/ency/article/003009.htm

There are three kinds of bone marrow transplants:

Autologous bone marrow transplant: The term auto means self. Stem cells are removed from you before you receive high-dose chemotherapy or radiation treatment. The stem cells are stored in a freezer (cryopreservation). After high-dose chemotherapy or radiation treatments, your stems cells are put back in your body to make (regenerate) normal blood cells. This is called a rescue transplant.

Allogeneic bone marrow transplant: The term allo means other. Stem cells are removed from another person, called a donor. Most times, the donor’s genes must at least partly match your genes. Special blood tests are done to see if a donor is a good match for you. A brother or sister is most likely to be a good match. Sometimes parents, children, and other relatives are good matches. Donors who are not related to you may be found through national bone marrow registries.

Umbilical cord blood transplant: This is a type of allogeneic transplant. Stem cells are removed from a newborn baby’s umbilical cord right after birth. The stem cells are frozen and stored until they are needed for a transplant. Umbilical cord blood cells are very immature so there is less of a need for matching. But blood counts take much longer to recover.

Before the transplant, chemotherapy, radiation, or both may be given. This may be done in two ways:

Ablative (myeloablative) treatment: High-dose chemotherapy, radiation, or both are given to kill any cancer cells. This also kills all healthy bone marrow that remains, and allows new stem cells to grow in the bone marrow.

Reduced intensity treatment, also called a mini transplant: Patients receive lower doses of chemotherapy and radiation before a transplant. This allows older patients, and those with other health problems to have a transplant.

A stem cell transplant is usually done after chemotherapy and radiation is complete. The stem cells are delivered into your bloodstream usually through a tube called a central venous catheter. The process is similar to getting a blood transfusion. The stem cells travel through the blood into the bone marrow. Most times, no surgery is needed.

Donor stem cells can be collected in two ways:

  • Bone marrow harvest. This minor surgery is done under general anesthesia. This means the donor will be asleep and pain-free during the procedure. The bone marrow is removed from the back of both hip bones. The amount of marrow removed depends on the weight of the person who is receiving it.
  • Leukapheresis. First, the donor is given 5 days of shots to help stem cells move from the bone marrow into the blood. During leukapheresis, blood is removed from the donor through an IV line in a vein. The part of white blood cells that contains stem cells is then separated in a machine and removed to be later given to the recipient. The red blood cells are returned to the donor.

Why the Procedure is Performed

A bone marrow transplant replaces bone marrow that either is not working properly or has been destroyed (ablated) by chemotherapy or radiation. Doctors believe that for many cancers, the donor’s white blood cells can attach to any remaining cancer cells, similar to when white cells attach to bacteria or viruses when fighting an infection.

Your doctor may recommend a bone marrow transplant if you have:

Certain cancers, such as leukemia, lymphoma, and multiple myeloma

A disease that affects the production of bone marrow cells, such as aplastic anemia, congenital neutropenia, severe immunodeficiency syndromes, sickle cell anemia, thalassemia

Had chemotherapy that destroyed your bone

2.5.3 Autologous stem cell transplantation

Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas

O.W Press,  F Appelbaum,  P.J Martin, et al.
http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(95)92225-3/abstract

25 patients with relapsed B-cell lymphomas were evaluated with trace-labelled doses (2·5 mg/kg, 185-370 MBq [5-10 mCi]) of 131I-labelled anti-CD20 (B1) antibody in a phase II trial. 22 patients achieved 131I-B1 biodistributions delivering higher doses of radiation to tumor sites than to normal organs and 21 of these were treated with therapeutic infusions of 131I-B1 (12·765-29·045 GBq) followed by autologous hemopoietic stem cell reinfusion. 18 of the 21 treated patients had objective responses, including 16 complete remissions. One patient died of progressive lymphoma and one died of sepsis. Analysis of our phase I and II trials with 131I-labelled B1 reveal a progression-free survival of 62% and an overall survival of 93% with a median follow-up of 2 years. 131I-anti-CD20 (B1) antibody therapy produces complete responses of long duration in most patients with relapsed B-cell lymphomas when given at maximally tolerated doses with autologous stem cell rescue.

Autologous (Self) Transplants

http://www.leukaemia.org.au/treatments/stem-cell-transplants/autologous-self-transplants

An autologous transplant (or rescue) is a type of transplant that uses the person’s own stem cells. These cells are collected in advance and returned at a later stage. They are used to replace stem cells that have been damaged by high doses of chemotherapy, used to treat the person’s underlying disease.

In most cases, stem cells are collected directly from the bloodstream. While stem cells normally live in your marrow, a combination of chemotherapy and a growth factor (a drug that stimulates stem cells) called Granulocyte Colony Stimulating Factor (G-CSF) is used to expand the number of stem cells in the marrow and cause them to spill out into the circulating blood. From here they can be collected from a vein by passing the blood through a special machine called a cell separator, in a process similar to dialysis.

Most of the side effects of an autologous transplant are caused by the conditioning therapy used. Although they can be very unpleasant at times it is important to remember that most of them are temporary and reversible.

Procedure of Hematopoietic Stem Cell Transplantation

Hematopoietic stem cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood. It may be autologous (the patient’s own stem cells are used) or allogeneic (the stem cells come from a donor).

Hematopoietic Stem Cell Transplantation

Author: Ajay Perumbeti, MD, FAAP; Chief Editor: Emmanuel C Besa, MD
http://emedicine.medscape.com/article/208954-overview

Hematopoietic stem cell transplantation (HSCT) involves the intravenous (IV) infusion of autologous or allogeneic stem cells to reestablish hematopoietic function in patients whose bone marrow or immune system is damaged or defective.

The image below illustrates an algorithm for typically preferred hematopoietic stem cell transplantation cell source for treatment of malignancy.

An algorithm for typically preferred hematopoietic stem cell transplantation cell source for treatment of malignancy: If a matched sibling donor is not available, then a MUD is selected; if a MUD is not available, then choices include a mismatched unrelated donor, umbilical cord donor(s), and a haploidentical donor.

Supportive Therapies

2.5.4  Blood transfusions – risks and complications of a blood transfusion

  • Allogeneic transfusion reaction (acute or delayed hemolytic reaction)
  • Allergic reaction
  • Viruses Infectious Diseases

The risk of catching a virus from a blood transfusion is very low.

HIV. Your risk of getting HIV from a blood transfusion is lower than your risk of getting killed by lightning. Only about 1 in 2 million donations might carry HIV and transmit HIV if given to a patient.

Hepatitis B and C. The risk of having a donation that carries hepatitis B is about 1 in 205,000. The risk for hepatitis C is 1 in 2 million. If you receive blood during a transfusion that contains hepatitis, you’ll likely develop the virus.

Variant Creutzfeldt-Jakob disease (vCJD). This disease is the human version of Mad Cow Disease. It’s a very rare, yet fatal brain disorder. There is a possible risk of getting vCJD from a blood transfusion, although the risk is very low. Because of this, people who may have been exposed to vCJD aren’t eligible blood donors.

  • Fever
  • Iron Overload
  • Lung Injury
  • Graft-Versus-Host Disease

Graft-versus-host disease (GVHD) is a condition in which white blood cells in the new blood attack your tissues.

2.5.5 Erythropoietin

Erythropoietin, (/ɨˌrɪθrɵˈpɔɪ.ɨtɨn/UK /ɛˌrɪθr.pˈtɪn/) also known as EPO, is a glycoprotein hormone that controls erythropoiesis, or red blood cell production. It is a cytokine (protein signaling molecule) for erythrocyte (red blood cell) precursors in the bone marrow. Human EPO has a molecular weight of 34 kDa.

Also called hematopoietin or hemopoietin, it is produced by interstitial fibroblasts in the kidney in close association with peritubular capillary and proximal convoluted tubule. It is also produced in perisinusoidal cells in the liver. While liver production predominates in the fetal and perinatal period, renal production is predominant during adulthood. In addition to erythropoiesis, erythropoietin also has other known biological functions. For example, it plays an important role in the brain’s response to neuronal injury.[1] EPO is also involved in the wound healing process.[2]

Exogenous erythropoietin is produced by recombinant DNA technology in cell culture. Several different pharmaceutical agents are available with a variety ofglycosylation patterns, and are collectively called erythropoiesis-stimulating agents (ESA). The specific details for labelled use vary between the package inserts, but ESAs have been used in the treatment of anemia in chronic kidney disease, anemia in myelodysplasia, and in anemia from cancer chemotherapy. Boxed warnings include a risk of death, myocardial infarction, stroke, venous thromboembolism, and tumor recurrence.[3]

2.5.6  G-CSF (granulocyte-colony stimulating factor)

Granulocyte-colony stimulating factor (G-CSF or GCSF), also known as colony-stimulating factor 3 (CSF 3), is a glycoprotein that stimulates the bone marrow to produce granulocytes and stem cells and release them into the bloodstream.

There are different types, including

  • Lenograstim (Granocyte)
  • Filgrastim (Neupogen, Zarzio, Nivestim, Ratiograstim)
  • Long acting (pegylated) filgrastim (pegfilgrastim, Neulasta) and lipegfilgrastim (Longquex)

Pegylated G-CSF stays in the body for longer so you have treatment less often than with the other types of G-CSF.

2.5.7  Plasma Exchange (plasmapheresis)

http://emedicine.medscape.com/article/1895577-overview

Plasmapheresis is a term used to refer to a broad range of procedures in which extracorporeal separation of blood components results in a filtered plasma product.[1, 2] The filtering of plasma from whole blood can be accomplished via centrifugation or semipermeable membranes.[3] Centrifugation takes advantage of the different specific gravities inherent to various blood products such as red cells, white cells, platelets, and plasma.[4] Membrane plasma separation uses differences in particle size to filter plasma from the cellular components of blood.[3]

Traditionally, in the United States, most plasmapheresis takes place using automated centrifuge-based technology.[5] In certain instances, in particular in patients already undergoing hemodialysis, plasmapheresis can be carried out using semipermeable membranes to filter plasma.[4]

In therapeutic plasma exchange, using an automated centrifuge, filtered plasma is discarded and red blood cells along with replacement colloid such as donor plasma or albumin is returned to the patient. In membrane plasma filtration, secondary membrane plasma fractionation can selectively remove undesired macromolecules, which then allows for return of the processed plasma to the patient instead of donor plasma or albumin. Examples of secondary membrane plasma fractionation include cascade filtration,[6] thermofiltration, cryofiltration,[7] and low-density lipoprotein pheresis.

The Apheresis Applications Committee of the American Society for Apheresis periodically evaluates potential indications for apheresis and categorizes them from I to IV based on the available medical literature. The following are some of the indications, and their categorization, from the society’s 2010 guidelines.[2]

  • The only Category I indication for hemopoietic malignancy is Hyperviscosity in monoclonal gammopathies

2.5.8  Platelet Transfusions

Indications for platelet transfusion in children with acute leukemia

Scott Murphy, Samuel Litwin, Leonard M. Herring, Penelope Koch, et al.
Am J Hematol Jun 1982; 12(4): 347–356
http://onlinelibrary.wiley.com/doi/10.1002/ajh.2830120406/abstract;jsessionid=A6001D9D865EA1EBC667EF98382EF20C.f03t01
http://dx.doi.org:/10.1002/ajh.2830120406

In an attempt to determine the indications for platelet transfusion in thrombocytopenic patients, we randomized 56 children with acute leukemia to one of two regimens of platelet transfusion. The prophylactic group received platelets when the platelet count fell below 20,000 per mm3 irrespective of clinical events. The therapeutic group was transfused only when significant bleeding occurred and not for thrombocytopenia alone. The time to first bleeding episode was significantly longer and the number of bleeding episodes were significantly reduced in the prophylactic group. The survival curves of the two groups could not be distinguished from each other. Prior to the last month of life, the total number of days on which bleeding was present was significantly reduced by prophylactic therapy. However, in the terminal phase (last month of life), the duration of bleeding episodes was significantly longer in the prophylactic group. This may have been due to a higher incidence of immunologic refractoriness to platelet transfusion. Because of this terminal bleeding, comparison of the two groups for total number of days on which bleeding was present did not show a significant difference over the entire study period.

Clinical and Laboratory Aspects of Platelet Transfusion Therapy
Yuan S, Goldfinger D
http://www.uptodate.com/contents/clinical-and-laboratory-aspects-of-platelet-transfusion-therapy

INTRODUCTION — Hemostasis depends on an adequate number of functional platelets, together with an intact coagulation (clotting factor) system. This topic covers the logistics of platelet use and the indications for platelet transfusion in adults. The approach to the bleeding patient, refractoriness to platelet transfusion, and platelet transfusion in neonates are discussed elsewhere.

Pooled Platelets – A single unit of platelets can be isolated from every unit of donated blood, by centrifuging the blood within the closed collection system to separate the platelets from the red blood cells (RBC). The number of platelets per unit varies according to the platelet count of the donor; a yield of 7 x 1010 platelets is typical [1]. Since this number is inadequate to raise the platelet count in an adult recipient, four to six units are pooled to allow transfusion of 3 to 4 x 1011 platelets per transfusion [2]. These are called whole blood-derived or random donor pooled platelets.

Advantages of pooled platelets include lower cost and ease of collection and processing (a separate donation procedure and pheresis equipment are not required). The major disadvantage is recipient exposure to multiple donors in a single transfusion and logistic issues related to bacterial testing.

Apheresis (single donor) Platelets – Platelets can also be collected from volunteer donors in the blood bank, in a one- to two-hour pheresis procedure. Platelets and some white blood cells are removed, and red blood cells and plasma are returned to the donor. A typical apheresis platelet unit provides the equivalent of six or more units of platelets from whole blood (ie, 3 to 6 x 1011 platelets) [2]. In larger donors with high platelet counts, up to three units can be collected in one session. These are called apheresis or single donor platelets.

Advantages of single donor platelets are exposure of the recipient to a single donor rather than multiple donors, and the ability to match donor and recipient characteristics such as HLA type, cytomegalovirus (CMV) status, and blood type for certain recipients.

Both pooled and apheresis platelets contain some white blood cells (WBC) that were collected along with the platelets. These WBC can cause febrile non-hemolytic transfusion reactions (FNHTR), alloimmunization, and transfusion-associated graft-versus-host disease (ta-GVHD) in some patients.

Platelet products also contain plasma, which can be implicated in adverse reactions including transfusion-related acute lung injury (TRALI) and anaphylaxis. (See ‘Complications of platelet transfusion’ .)

Read Full Post »


Acute Lymphoblastic Leukemia and Bone Marrow Transplantation

Author, Editor: Tilda Barliya PhD

Acute lymphoblastic leukemia (ALL) is a malignant disorder of lymphoid progenitor cells  was  previously discussed for the genetic origin and the prognostic factors used in clinical trials (1). We will now  focus on the treatment options with emphasis on the bone marrow transplantation (2).

According to the National Cancer Institute (NCI), the treatment of childhood ALL usually has 3 phases (3a):

  1. Induction Therapy: The goal is to kill leukemia cells in both the blood and the bone marrow and induce a remission.
  2. Consolidation/Intensification Therapy: It begins once the leukemia is in remission. The goal is to kill any remaining leukemia cells that may not be active but may regrow and cause relapse.
  3. Maintenance Therapy: The goal is to kill any remaining leukemia cells that may regrow and cause relapse. In this phase the different cancer treatments are usually been given at lower doses than those in the previous phases.

Four types of cancer treatment are used:

  • Chemotherapy – The way the chemotherapy is given depends on the child’s risk group. Children with high-risk ALL receive more anticancer drugs, higher doses of anticancer drugs, and receive treatment for a longer time than children with standard-risk ALL.. The full list of approved drug (3b)
  • Radiation Therapy– is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy. External radiation therapy uses a machine outside the body to send radiation toward the cancer. Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters  that are placed directly into or near the cancer. External radiation therapy may be used to treat childhood ALL that has spread, or may spread, to the brain and spinal cord.
  • Chemotherapy with stem cell transplantation – A method inwhich stem cells (immature blood cells) are removed from the blood or bone marrow of a donor. After the patient receives treatment, the donor’s stem cells are given to the patient through an infusion. These reinfused stem cells grow into (and restore) the patient’s blood cells. Stem cell transplant is rarely used as initial treatment for children and teenagers with ALL. It is used more often as part of treatment for ALL that relapses
  • Targeted TherapyTyrosine Kinase Inhibitors (TKIs) are targeted therapy drugs that block the enzyme, tyrosine kinase, which causes stem cells to become more white blood cells or blasts than the body needs. For example, imatinib mesylate (Gleevec) is a TKI used in the treatment of children with Philadelphia chromosome-positive ALL. However, because patients can develop resistance to these drugs, new tyrosine kinase inhibitors are being investigated. For example, nilotinib (AMN-107) is being studied for patients with Philadelphia chromosome positive ALL who are resistant to imatinib

Bone Marrow or Peripheral Blood Stem cell Transplant for ALL

Stem cell transplants (SCT) offer a way for doctors to use high doses of chemo. Although the drugs destroy the patient’s bone marrow, transplanted stem cells can restore the bone marrow’s ability to make blood. Stem cells for a transplant come from either the blood or from the bone marrow. Bone marrow transplants were more common in the past, but they have largely been replaced by peripheral blood stem cell transplant (PBSCT).

Types of Transplants (4).

The stem cells can come from either the patient (an autologous transplant) or from a matched donor (an allogeneic transplant).

  • Allogeneic stem cell transplant: In an allogeneic transplant, the stem cells come from someone else – usually a donor whose tissue type is a very close match to the patient’s. The donor may be a brother or sister if they are a good match. Less often, an unrelated donor may be found. An allogeneic transplant is the preferred type of transplant for ALL when it is available.
  • “Mini-transplant”: “mini-transplant” (also called a non-myeloablative transplant or reduced-intensity transplant), where they get lower doses of chemo and radiation that do not destroy all the cells in their bone marrow. They then are given the donor stem cells. These cells enter the body and form a new immune system, which sees the leukemia cells as foreign and attacks them (a graft-versus-leukemia effect). This is not a standard treatment for ALL, and is being studied to find out how useful it may be.
  • Autologous stem cell transplant: In an autologous transplant, a patient’s own stem cells are removed from his or her bone marrow or blood. They are frozen and stored while the person gets treatment (high-dose chemo and/or radiation). The stem cells are then given back to the patient after treatment.

One problem with autologous transplants is that it is hard to separate normal stem cells from leukemia cells in the bone marrow or blood samples. Even after treating the stem cells in the lab to try to kill or remove any leukemia cells, there is the risk of returning some leukemia cells with the stem cell transplant

Stem cell transplants and side effects (4):

Early side effects: Early side effects are much the same as those caused by any other type of high-dose chemo, such as nausea, vomiting, loss of appetite, mouth sores, and hair loss. Because of the high doses of chemo used, these can sometimes be severe.

Infection resulting from a weakened immune system is the most common side effect. Because the stem cell procedure is done more swiftly, the risk period is shorter than with bone marrow transplantation. The risk for infection is most critical during the first 6 weeks following the transplant, but it takes 6 – 12 months post-transplant for a patient’s immune system to fully recover. Immune systems of patients with graft-versus-host disease can take even longer to function normally. Low red cell count and platelet counts are also early-side effects that when happens are treated with blood transfusion.

A rare but serious side effect of stem cell transplant is called veno-occlusive disease of the liver (VOD). In this disease, the high doses of chemo given for the transplant damage the liver. Symptoms include weight gain (from fluid collecting), liver swelling, and yellowing of the skin and eyes (jaundice). When severe, it can lead to liver failure, kidney failure, and even death.

Long-term side effects: Some side effects can last for a long time, or may not happen until years after the transplant. These long-term side effects can include the following:

  • Acute/Chronic Graft-versus-host disease (GVHD), which occurs only in a donor transplant
  • Organ damage:  lungs ( shortness of breath), ovaries (infertility and loss of menstrual period), thyroid, eyes (cataract), bone etc.
  • Developing another type of leukemia or other cancer several years later.

ALL (and AML), Bone Marrow transplant and Clinical Trials

Back in the early 80’s, chemotherapy was shown to cure a substantial portions of patients with ALL. Yet some patients had high risk of relapse when treated using conventional regimens, due to patient- and disease-related variables.  Bone marrow transplantation (BMT) was found to have encouraging results depending on the circumstances, yet the relative role between chemo and BMT to high-risk patients was controversial.

It was believed that the factors which predict poor outcome with chemo do not adversely affect the transplant outcome, yet this assumption was not based on comparing similar predicting factors . More so, the prognostic factors for outcome after BMT were not well-defined and the optimal regimen for transplant was not agreed upon. Thus, researches aimed to identify the characteristics and factors affecting good outcome after transplantation for ALL in first and second remission.

For this, 690 patients with HLA-identical sibling receiving allogeneic BMT either after first or second complete remission (CR). Numerous factors were accounted for including; age, sex, donor-recipient sex match, chemo regimen and presence of GVHD.

Of the many factors evaluated, several were highly significant in BMT outcome:

  • GVHD – It may have both favorable and unfavorable effect on the outcome. On one hand it may reduce leukemia relapse but on the other hand it may increase transplant-related mortality.
  • Conditioning chemo regimens –  most chemo regimens had negative effects of the BTM outcome. By, since the study group included only a small number of patients and these studies were conducted before the new chemo types/regimes using high-does etoposide, this factor may need to be reevaluated.
  • Donor-recipient sex match –  This factor was found to be highly significant in female receiving donors from male-matched donors. These patients had higher risk of relapse and treatment failure. This was probably due to host sensitization to the H-Y antigens. This data is also needed to be handled with cautious due to the small number of patients.
  • Immune phenotype –  Blood cell type and leukocyte levels at the beginning of the treatment is a another crucial factor. Higher leukocyte levels and non-T cell phenotype resulted in adverse outcome which led to remission.
  • Patient age – Age did not play a role when comparing the outcome after first relapse, but was found to be more favorable for younger ages (<16) when comparing the outcome after second relapse.
  • First relapse – a failure of first therapy override any other variable. The medical situation ( on/off chemo) at the time of a first relapse is highly important.  If relapse occurred while OFF chemo, patients had better prognosis.

A recent study conducted by Wing Leung, M.D., Ph.D from St. Jude Children Hospital shows that that transplantation offers real hope of survival to patients with high-risk leukemia that is not curable with intensive chemotherapy. Bone marrow transplant survival more than doubled in recent years for young, high-risk leukemia patients who lacked genetically matched donors (5).

Five years after transplantation, survival was 65 percent for the 37 St. Jude patients with high-risk ALL treated at the hospital between 2000 and 2007, compared to 28 percent for the 57 St. Jude ALL patients who underwent treatment between 1991 and 1999. For AML patients, success rates grew from 34 % to 74%.

Dr. Leung explains that historically, transplant patients fared best and suffered fewer complications when the donors were relatives who carried the same six proteins on their white blood cells. Known as HLA proteins, they serve as markers to help the immune system distinguish between an individual’s healthy tissue and diseased cells that should be eliminated.

However, St. Jude investigators pioneered the use of haploidentical transplants (=partially genetically matched donors such as parents), demonstrating that careful matching of patients and donors and proper processing of the hematopoietic donor cells enhances the anti-cancer effect of transplantation without significantly increasing side effects.

The process involves careful testing and HLA screening of potential donors to identify the one whose immune system is likely to mount the most aggressive attack against remaining leukemia cells using specialized immune cells known as natural killer cells (5).

Dr. Leung further explains that the odds of finding a good haploidentical donor are 70 to 80 percent, compared to about a 25 percent chance of having a matched sibling donor, Leung said. The likelihood of finding a genetically identical, unrelated donor ranges from about 60 to 90 percent depending on the patient’s race or ethnicity.

Summary

Previous study have identified several factors that may affect the outcome of BMT in high-risk patients and included GVHD, blood count, chemo regimen prior to the transplantation, donor-sex matched and others. In a more recent study, however,  the results indicated that all patients with very high-risk leukemia should be considered as candidates for HCT  (Allogeneic hematopoietic cell transplantation) early in the course of diagnosis or relapse treatment, regardless of the availability of a matched donor or the intensity of prior chemotherapy. HLA typing, donor search, and transplant center referral should be performed as soon as possible. Patients with persistent minimal residual disease (MRD) or hematologic relapse while on therapy are also considered candidates for HCT in current protocols. There are several major differences between previous years study-analyses and this current one that needs to be taken into consideration before including or excluding each of them. [A]; 24% of the allogeneic HCTs in patients younger than 20 years worldwide were performed using cord blood grafts vs the previous bone marrow transplant procedure, [B] differences chemo-regimens between the previous and current years,  [C] different transplant approaches evolved simultaneously, and therefore it is difficult to conduct retrospective analyses and [D] matching in HLA-C was not required for unrelated donor HCTs before 2008 in several institutes and therefore outcomes after contemporary 8 of 8 loci-matched transplantations may even be better than those favorable rates reported.

The data reported within is highly important and may increase patients survival rates and increased quality of lives. It is therefore necessary that different clinical-trial centers will re-evaluate current protocols and consider this new approach.

REFERENCES:

1. Acute Lymphoblastic Leukemia (ALL) and Nanotechnology. Author Tilda Barliya PhD

https://pharmaceuticalintelligence.com/2013/03/21/acute-lymphoblastic-leukemia-all-and-nanotechnology/

2.  In Focus: Identity of Cancer Stem Cells. Author Ritu Saxena

https://pharmaceuticalintelligence.com/2013/03/22/in-focus-identity-of-cancer-stem-cells/

3a. NCI: Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®).

http://www.cancer.gov/cancertopics/pdq/treatment/childALL/Patient/page4

3b. Drugs Approved for Acute Lymphoblastic Leukemia (ALL)

http://www.cancer.gov/cancertopics/druginfo/leukemia#dal1

4. American Cancer Society: Leukemia–Acute Lymphocytic Overview

http://www.cancer.org/cancer/leukemia-acutelymphocyticallinadults/overviewguide/leukemia-all-overview-treating-bone-marrow-stem-cell.

5. W. Leung, D. Campana, J. Yang, D. Pei, E. Coustan-Smith, K. Gan, J. E. Rubnitz, J. T. Sandlund, R. C. Ribeiro, A. Srinivasan, C. Hartford, B. M. Triplett, M. Dallas, A. Pillai, R. Handgretinger, J. H. Laver, C.-H. Pui. High success of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemiaBlood, 2011; DOI: 10.1182/blood-2011-01-333070

http://bloodjournal.hematologylibrary.org/content/118/2/223.full

6. AJ Barrett, MM Horowitz, RP Gale, JC Biggs, BM Camitta, KA Dicke, E Gluckman, RA Good, RH Herzig, and MB Lee. Marrow transplantation for acute lymphoblastic leukemia: factors affecting relapse and survival. Blood August 1, 1989vol. 74 no. 2 862-871

http://bloodjournal.hematologylibrary.org/content/74/2/862.full.pdf+html

7. Fujii H, Tradeau JD., Teachey DT., Fish JD., Grupp SA., Schlts KR and Reid GS. In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 2007, 109: 2008-2013. 

http://bloodjournal.hematologylibrary.org/content/109/5/2008.full.pdf+html

8.   Schrauder A, Reiter A,  Gadner H, Niethammer D, Klingebiel T, Kremens B,  Wolfram Ebell P,  Zimmermann M, Niggli F, Wolf-Dieter Ludwig, Riehm H, Welte K, and Schrappe M. Superiority of Allogeneic Hematopoietic Stem-Cell Transplantation Compared With Chemotherapy Alone in High-Risk Childhood T-Cell Acute Lymphoblastic Leukemia: Results From ALL-BFM 90 and 95. J Clin Oncol 2006 24:5742-5749.

http://jco.ascopubs.org/content/24/36/5742.full.pdf+html

9.  O. Ringde´n, M. Labopin, A. Bacigalupo, W. Arcese, U.W. Schaefer, R. Willem. Transplantation of Peripheral Blood Stem Cells as Compared With Bone Marrow From HLA-Identical Siblings in Adult Patients With Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia. Journal of Clinical Oncology 2002, Vol 20, No 24 (December 15),: pp 4655-4664.

http://jco.ascopubs.org/content/20/24/4655.full.pdf+html

10. Bunin N, Carston M, Wall D, Adams R, Casper J, Kamani N, King R, and the National Marrow Donor Program Working Group. Unrelated marrow transplantation for children with acute lymphoblastic leukemia in second remission.  Blood 2002, May 1, vol 99: 3151-3157.  http://bloodjournal.hematologylibrary.org/content/99/9/3151.full.pdf+html

11. Mehmet Uzunel, Jonas Mattsson, Marie Jaksch, Mats Remberger, and Olle Ringde´n. The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood 2001 98: 1982-1985. http://bloodjournal.hematologylibrary.org/content/98/6/1982.full.pdf+html

12. Marina Cetkovic-Cvrlje, Bertram A. Roers, Barbara Waurzyniak, Xing-Ping Liu, and Fatih M. Uckun. Targeting Janus kinase 3 to attenuate the severity of acute graft-versus-host disease across the major histocompatibility barrier in mice. Blood 2001 98: 1607-1613. http://bloodjournal.hematologylibrary.org/content/98/5/1607.full.pdf+html

13. Kate A. Wheeler, Susan M. Richards, Clifford C. Bailey, Brenda Gibson, Ian M. Hann, Frank G. H. Hill, and Judith M. Chessells for the Medical Research Council Working Party on Childhood Leukaemia. Bone marrow transplantation versus chemotherapy in the treatment of very high–risk childhood acute lymphoblastic leukemia in first remission: results from Medical Research Council UKALL X and XI. Blood 2000 96: 2412-2418. http://bloodjournal.hematologylibrary.org/content/96/7/2412.full.pdf+html

14. O. Ringde´n, M. Remberger, T. Ruutu, J. Nikoskelainen, L. Volin, L. Vindeløv, T. Parkkali, S. Lenhoff, B. Sallerfors, L. Mellander, P. Ljungman, and N. Jacobsen, for the Nordic Bone Marrow Transplantation Group.  Increased Risk of Chronic Graft-Versus-Host Disease, Obstructive Bronchiolitis, and Alopecia With Busulfan Versus Total Body Irradiation: Long-Term Results of a Randomized Trial in Allogeneic Marrow Recipients With Leukemia. 1999 93: 2196-2201. http://bloodjournal.hematologylibrary.org/content/93/7/2196.full.pdf+html

15.  Christopher J.C. Knechtli, Nicholas J. Goulden, Jeremy P. Hancock, Victoria L.G. Grandage, Emma L. Harris, Russell J. Garland, Claire G. Jones, Anthony W. Rowbottom, Linda P. Hunt, Ann F. Green, Emer Clarke, Alan W. Lankester, Jacqueline M. Cornish, Derwood H. Pamphilon, Colin G. Steward, and Anthony Oakhill.  Minimal Residual Disease Status Before Allogeneic Bone Marrow Transplantation Is an Important Determinant of Successful Outcome for Children and Adolescents With Acute Lymphoblastic Leukemia. Blood 1998 92: 4072-4079. http://bloodjournal.hematologylibrary.org/content/92/11/4072.full.pdf+html

16.  Daniel J. Weisdorf, Amy L. Billett, Peter Hannan, Jerome Ritz, Stephen E. Sallan, Michael Steinbuch, and Norma K.C. Ramsay.  Autologous Versus Unrelated Donor Allogeneic Marrow Transplantation for Acute Lymphoblastic Leukemia. Blood 1997 90: 2962-2968. http://bloodjournal.hematologylibrary.org/content/90/8/2962.full.pdf+html

Read Full Post »