Reporter: Aviva Lev-Ari, PhD, RN

Methylation Subtypes and Large-Scale Epigenetic Alterations in Gastric Cancer
- Hermioni Zouridis1,*,†,
- Niantao Deng1,2,*,
- Tatiana Ivanova1,
- Yansong Zhu1,
- Bernice Wong3,
- Dan Huang4,
- Yong Hui Wu1,5,
- Yingting Wu6,7,
- Iain Beehuat Tan2,8,
- Natalia Liem9,
- Veena Gopalakrishnan1,
- Qin Luo1,
- Jeanie Wu5,
- Minghui Lee5,
- Wei Peng Yong9,10,
- Liang Kee Goh1,
- Bin Tean Teh1,3,4,
- Steve Rozen6,11 and
- Patrick Tan1,5,9,12,‡
+Author Affiliations
1Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
2NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
3National Cancer Centre Singapore–Van Andel Research Institute Translational Research Laboratory, Department of Medical Sciences, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore.
4Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
5Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.
6Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
7Singapore-MIT Alliance, National University of Singapore, Singapore 119074, Singapore.
8Division of Medical Oncology, National Cancer Centre, Singapore 169610, Singapore.
9Cancer Science Institute of Singapore, National University of Singapore, Singapore 119074, Singapore.
10National Cancer Institute Singapore, National University Hospital, Singapore 119228, Singapore.
11Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
12Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore 138672, Singapore.
+Author Notes
-
↵* These authors contributed equally to this work.
-
↵† Present address: LabConnect, LLC, 2910 First Avenue South, Suite 200, Seattle, WA 98134, USA.
- ↵‡To whom correspondence should be addressed. E-mail: gmstanp@duke-nus.edu.sg
ABSTRACT
Epigenetic alterations are fundamental hallmarks of cancer genomes. We surveyed the landscape of DNA methylation alterations in gastric cancer by analyzing genome-wide CG dinucleotide (CpG) methylation profiles of 240 gastric cancers (203 tumors and 37 cell lines) and 94 matched normal gastric tissues. Cancer-specific epigenetic alterations were observed in 44% of CpGs, comprising both tumor hyper- and hypomethylation. Twenty-five percent of the methylation alterations were significantly associated with changes in tumor gene expression. Whereas most methylation-expression correlations were negative, several positively correlated methylation-expression interactions were also observed, associated with CpG sites exhibiting atypical transcription start site distances and gene body localization. Methylation clustering of the tumors revealed a CpG island methylator phenotype (CIMP) subgroup associated with widespread hypermethylation, young patient age, and adverse patient outcome in a disease stage–independent manner. CIMP cell lines displayed sensitivity to 5-aza-2′-deoxycytidine, a clinically approved demethylating drug. We also identified long-range regions of epigenetic silencing (LRESs) in CIMP tumors. Combined analysis of the methylation, gene expression, and drug treatment data suggests that certain LRESs may silence specific genes within the region, rather than all genes. Finally, we discovered regions of long-range tumor hypomethylation, associated with increased chromosomal instability. Our results provide insights into the epigenetic impact of environmental and biological agents on gastric epithelial cells, which may contribute to cancer.
Vol. 4, Issue 156, p. 156ra140
Sci. Transl. Med. DOI: 10.1126/scitranslmed.3004504
Methylation-based Stomach Cancer Subtypes
NEW YORK (GenomeWeb News) – A new study in Science Translational Medicine is highlighting the epigenetic subtypes that exist within stomach cancer.
“Our results strongly demonstrate that gastric cancer is not one disease but a conglomerate of multiple diseases, each with a different underlying biology and hallmark features,” senior author Patrick Tan, a cancer researcher with the Duke-National University of Singapore Graduate Medical School, said in a statement.
“If gastric cancer is the result of multiple interacting factors, including both environmental factors and host genetic factors, we need better ways to diagnosis and treat it,” added Tan, who is also affiliated with Singapore’s National Cancer Centre and the Genome Institute of Singapore.
Tan and colleagues based in Singapore and the US did array-based DNA methylation analyses on more than 200 gastric tumors and dozens of gastric cancer lines. Their subsequent analyses of these methylation profiles indicated that stomach cancers have many stretches of sequence with higher or lower levels of methylation compared with nearly 100 matched normal stomach samples.
Within the tumor and cell lines, the analysis revealed subsets of gastric cancer with distinct methylation profiles that appear to be prognostically important.
In particular, a group of tumors known as CIMP (CpG island methylator phenotype) tumors, which show excess methylation at some cytosine and guanine-rich regions of the genome, tended to turn up in younger gastric cancer patients and those with poor outcomes.
On the other hand, results of the study also hint that the pronounced methylation shifts in these CIMP gastric cancers could also render them more vulnerable to demethylating compounds.
“Gastric cancer is a heterogenous disease with individual patients often displaying markedly different responses to the same treatment,” Tan said. “Improving gastric cancer clinical outcomes will require molecular approaches capable of subdividing patients into biologically similar subgroups, and designing subtype-specific therapies for each group.”
Previous genomic studies have started to unravel the range of somatic mutations and other genetic alterations that can contribute to gastric adenocarcinoma, the researchers noted. Less is known about the epigenetic features of the often deadly disease, which is especially common in some Asian populations, though some studies have identified specific genes with unusual epigenetic profiles in gastric cancer.
In an effort to more fully understand the epigenetic features of stomach cancer, Tan and his colleagues used Illumina Infinium arrays to profile cytosine methylation patterns in tumor samples from 203 individuals with gastric cancer, along with matched normal stomach tissue samples for 94 of the patients.
Using a similar strategy, the group also measured genome-wide methylation patterns in 37 stomach cancer cell lines.
When they compared methylation profiles across the samples, the researchers saw that some 44 percent of the CpG sites tested had higher- or lower-than-usual cytosine methylation levels that were specific to the stomach cancer. Around a quarter of these seemed to coincide with either jumps or — more frequently — dips in gene expression in the tumors, they reported.
A subset of the tumors had especially high levels of CpG island methylation, the team found. Follow-up analyses indicated that these tumors — which comprise an apparent CIMP sub-group of the stomach cancer — were more commonly found in young patients and/or those with poor survival outcomes.
Over-represented amongst the genes in highly methylated regions of CIMP tumors were genes implicated in stem cell-related processes, researchers noted, as were sites recognized by the histone regulating Polycomb repressive complex.
“Taken collectively,” they wrote, “these results suggest that CIMP tumors may represent a clinically and biologically distinct sub-group of gastric cancers.”
Moreover, in one of its follow-up experiments the team found that it was possible to curb the proliferation of seven gastric cancer-derived cell lines in the CIMP sub-group using a demethylating drug called 5-aza-2′-deoxycytidine, or 5-Aza-dC — an effect they did not see in 10 non-CIMP cell lines treated with the drug.
Based on findings from their methylation and gene expression profiling in gastric cancer so far, the study authors argued that an improved appreciation of the methylome-based sub-types present in the disease might aid future efforts to improve stomach cancer diagnosis and treatment options.
“[A]dditional work will focus on developing simple diagnostic tests to detect gastric cancer at earlier stages, plus drugs and drug targets that might exhibit high potency against different molecular subtypes of disease,” Tan said in a statement.
Related Stories
- Age-Related Gene Expression Differences in Autism Detected in Post-Mortem Brain Samples
March 23, 2012 / GenomeWeb Daily News
- Teams Explore Epigenetic Consequences of Mutating Cancer-Associated Enzyme
February 15, 2012 / GenomeWeb Daily News
- Study Suggests Widespread Loss of Epigenetic Regulation in Cancer Genomes
June 27, 2011 / GenomeWeb Daily News
- Gene Expression Study Points to Common Transcription Shifts in Autistic Brains
May 25, 2011 / GenomeWeb Daily News
- Methylation Market Heats up as Illumina, RainDance Debut New Offerings
January 4, 2011 / BioArray NewsSource:http://www.genomeweb.com//node/1141161?hq_e=el&hq_m=1378037&hq_l=2&hq_v=e1df6f3681
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.