Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘leukemias’


Platelet Transfusions

Larry H. Bernstein, MD, FCAP, Curator

LPBI

Platelet Transfusion: A Clinical Practice Guideline From the AABB

Richard M. Kaufman, MD; Benjamin Djulbegovic, MD, PhD; Terry Gernsheimer, MD; Steven Kleinman, MD,
Alan T. Tinmouth, MD; Kelley E. Capocelli, MD; Mark D. Cipolle, MD, PhD; Claudia S. Cohn, MD, PhD; et al.

Ann Intern Med. 2015;162(3):205-213. http://dx.doi.org:/10.7326/M14-1589

Annals of Internal Medicine 3 February 2015, Vol 162, No. 3>

Approximately 2.2 million platelet doses are transfused annually in the United States (1). A high proportion of these platelet units are transfused prophylactically to reduce the risk for spontaneous bleeding in patients who are thrombocytopenic after chemotherapy or hematopoietic progenitor cell transplantation (HPCT) (13). Unlike other blood components, platelets must be stored at room temperature, limiting the shelf life of platelet units to only 5 days because of the risk for bacterial growth during storage. Therefore, maintaining hospital platelet inventories is logistically difficult and highly resource-intensive (45). Platelet transfusion is associated with several risks to the recipient (Table 1), including allergic reactions and febrile nonhemolytic reactions. Sepsis from a bacterially contaminated platelet unit represents the most frequent infectious complication from any blood product today (8). In any situation where platelet transfusion is being considered, these risks must be balanced against the potential clinical benefits.

Background: The AABB (formerly, the American Association of Blood Banks) developed this guideline on appropriate use of platelet transfusion in adult patients.

Methods: These guidelines are based on a systematic review of randomized, clinical trials and observational studies (1900 to September 2014) that reported clinical outcomes on patients receiving prophylactic or therapeutic platelet transfusions. An expert panel reviewed the data and developed recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework.

Recommendation 1: The AABB recommends that platelets should be transfused prophylactically to reduce the risk for spontaneous bleeding in hospitalized adult patients with therapy-induced hypoproliferative thrombocytopenia. The AABB recommends transfusing hospitalized adult patients with a platelet count of 10 × 109 cells/L or less to reduce the risk for spontaneous bleeding. The AABB recommends transfusing up to a single apheresis unit or equivalent. Greater doses are not more effective, and lower doses equal to one half of a standard apheresis unit are equally effective. (Grade: strong recommendation; moderate-quality evidence)

Recommendation 2: The AABB suggests prophylactic platelet transfusion for patients having elective central venous catheter placement with a platelet count less than 20 × 109 cells/L. (Grade: weak recommendation; low-quality evidence)

Recommendation 3: The AABB suggests prophylactic platelet transfusion for patients having elective diagnostic lumbar puncture with a platelet count less than 50 × 109 cells/L. (Grade: weak recommendation; very-low-quality evidence)

Recommendation 4: The AABB suggests prophylactic platelet transfusion for patients having major elective nonneuraxial surgery with a platelet count less than 50 × 109 cells/L. (Grade: weak recommendation; very-low-quality evidence)

Recommendation 5: The AABB recommends against routine prophylactic platelet transfusion for patients who are nonthrombocytopenic and have cardiac surgery with cardiopulmonary bypass. The AABB suggests platelet transfusion for patients having bypass who exhibit perioperative bleeding with thrombocytopenia and/or evidence of platelet dysfunction. (Grade: weak recommendation; very-low-quality evidence)

Recommendation 6: The AABB cannot recommend for or against platelet transfusion for patients receiving antiplatelet therapy who have intracranial hemorrhage (traumatic or spontaneous). (Grade: uncertain recommendation; very-low-quality evidence)

Table 1. Approximate Per-Unit Risks for Platelet Transfusion in the United States

Approximate_Per-Unit_Risks_for_Platelet_Transfusion_in_the_United_States

Approximate_Per-Unit_Risks_for_Platelet_Transfusion_in_the_United_States

Clinical and laboratory aspects of platelet transfusion therapy
Literature review current through: Sep 2015. | This topic last updated: Jun 12, 2015.

INTRODUCTION — Hemostasis depends on an adequate number of functional platelets, together with an intact coagulation (clotting factor) system. This topic covers the logistics of platelet use and the indications for platelet transfusion in adults. The approach to the bleeding patient, refractoriness to platelet transfusion, and platelet transfusion in neonates are discussed elsewhere.

(See “Approach to the adult patient with a bleeding diathesis”.)

(See “Refractoriness to platelet transfusion therapy”.)

(See “Clinical manifestations, evaluation, and management of neonatal thrombocytopenia”, section on ‘Platelet transfusion’.)

PLATELET COLLECTION — There are two ways that platelets can be collected: by isolation from a unit of donated blood, or by apheresis from a donor in the blood bank.

Pooled platelets – A single unit of platelets can be isolated from every unit of donated blood, by centrifuging the blood within the closed collection system to separate the platelets from the red blood cells (RBC). The number of platelets per unit varies according to the platelet count of the donor; a yield of 7 x 1010platelets is typical [1]. Since this number is inadequate to raise the platelet count in an adult recipient, four to six units are pooled to allow transfusion of 3 to 4 x 1011 platelets per transfusion [2]. These are called whole blood-derived or random donor pooled platelets.

Advantages of pooled platelets include lower cost and ease of collection and processing (a separate donation procedure and pheresis equipment are not required). The major disadvantage is recipient exposure to multiple donors in a single transfusion and logistic issues related to bacterial testing.

Apheresis (single donor) platelets – Platelets can also be collected from volunteer donors in the blood bank, in a one- to two-hour pheresis procedure. Platelets and some white blood cells are removed, and red blood cells and plasma are returned to the donor. A typical apheresis platelet unit provides the equivalent of six or more units of platelets from whole blood (ie, 3 to 6 x 1011platelets) [2]. In larger donors with high platelet counts, up to three units can be collected in one session. These are called apheresis or single donor platelets.

Advantages of single donor platelets are exposure of the recipient to a single donor rather than multiple donors, and the ability to match donor and recipient characteristics such as HLA type, cytomegalovirus (CMV) status, and blood type for certain recipients. (See ‘Ordering platelets’ below.)

Issues related to the effects of platelet pheresis on the donor are covered elsewhere. (See “Blood donor screening: Procedures and processes to enhance safety for the blood recipient and the blood donor”, section on ‘Apheresis platelet donors’.)

Both pooled and apheresis platelets contain some white blood cells (WBC) that were collected along with the platelets. These WBC can cause febrile non-hemolytic transfusion reactions (FNHTR), alloimmunization, and transfusion-associated graft-versus-host disease (ta-GVHD) in some patients.

Platelet products also contain plasma, which can be implicated in adverse reactions including transfusion-related acute lung injury (TRALI) and anaphylaxis. (See‘Complications of platelet transfusion’ below.)

Several strategies are used to prevent the complications associated with WBC and plasma contamination of platelets. (See ‘Ordering platelets’ below.)

Platelets concentrates also contain a small number of red blood cells (RBCs) that express Rh antigens on their surface (platelets do not express Rh antigens). The small numbers of RBCs in apheresis platelets negates the issue of Rh alloimmunization in most patients. However, blood banks avoid giving platelets from Rh+ donors to Rh female patients because of the potential risk of Rh alloimmunization and subsequent hemolytic disease of the newborn. (See “Overview of Rhesus D alloimmunization in pregnancy”.)

PLATELET STORAGE AND PATHOGEN REDUCTION — Platelets are stored at room temperature, because cold induces clustering of von Willebrand factor receptors on the platelet surface and morphological changes of the platelets, leading to enhanced clearance by hepatic macrophages and reduced platelet survival in the recipient [3-6].

All cells are more metabolically active at room temperature, so platelets are stored in bags that allow oxygen and carbon dioxide gas exchange. Citrate is included to prevent clotting and maintain proper pH, and dextrose is added as an energy source [2].

A disadvantage of room temperature storage is the increased growth of bacteria compared with blood products stored in the refrigerator or freezer. (See‘Complications of platelet transfusion’ below.)

Strategies for reducing exposure to contaminating pathogens include:

Donor screening for bloodborne pathogens (see “Blood donor screening: Laboratory testing”, section on ‘Infectious disease screening’ and “Blood donor screening: Procedures and processes to enhance safety for the blood recipient and the blood donor”, section on ‘Protection of the recipient’)

Proper skin sterilization techniques during collection, and discarding the first 15 to 30 mL of blood collected, which is most likely to be contaminated by skin bacteria

Performing tests to screen for bacterial contamination, such as automated culture-based assays, and rapid point-of-issue tests (see “Transfusion-transmitted bacterial infection”, section on ‘Detection of contamination’)

Using blood products that have been subjected to pathogen inactivation or reduction treatment (not available in the United States) (see “Pathogen inactivation of blood products”, section on ‘Pathogen inactivation of platelets’and “Preparation of blood components”, section on ‘Pathogen reduction’)

The shelf life of platelets stored at room temperature is five days because of the bacterial infection risk that increases in relationship to the storage duration. This short shelf life contributes to the greater sensitivity of platelet inventory to shortages.

INDICATIONS FOR PLATELET TRANSFUSION — Platelets can be transfused therapeutically (ie, to treat active bleeding or in preparation for an invasive procedure that would cause bleeding), or prophylactically (ie, to prevent spontaneous bleeding).

Actively bleeding patient — Actively bleeding patients with thrombocytopenia should be transfused with platelets immediately to keep platelet counts above50,000/microL in most bleeding situations, and above 100,000/microL if there is disseminated intravascular coagulation or central nervous system bleeding. (See“Clinical features, diagnosis, and treatment of disseminated intravascular coagulation in adults”, section on ‘Treatment’ and “Spontaneous intracerebral hemorrhage: Treatment and prognosis”, section on ‘Initial treatment’.).

Other factors contributing to bleeding should also be addressed. These include:

Surgical or anatomic defect

Fever

Infection or inflammation

Coagulopathy

Acquired or inherited platelet function defect

The dose and frequency of platelet transfusions will depend on the platelet count and the severity of bleeding. (See ‘Dose’ below.)

Preparation for an invasive procedure — Platelets are transfused in preparation for an invasive procedure if the thrombocytopenia is severe and the risks of bleeding are deemed high. Most of the data used to determine bleeding risk come from retrospective studies of patients who are afebrile and have thrombocytopenia but not coagulopathy [7]. Typical platelet count thresholds that are used for some common procedures are as follows:

Neurosurgery or ocular surgery – 100,000/microL

Most other major surgery – 50,000/microL

Endoscopic procedures – 50,000/microL for therapeutic procedures;20,000/microL for low risk diagnostic procedures (see “Endoscopic procedures in patients with disorders of hemostasis”, section on ‘Procedure-related bleeding risk’)

Central line placement – 20,000/microL [8]

Lumbar puncture – 10,000 to 20,000/microL in patients with hematologic malignancies and greater than 40,000 to 50,000 in patients without hematologic malignancies, but lower in patients with immune thrombocytopenia (ITP) [9-11]

Epidural anesthesia – 80,000/microL [11]

Bone marrow aspiration/biopsy20,000/microL

Prevention of spontaneous bleeding — Prophylactic transfusion is used to prevent spontaneous bleeding in patients at high risk of bleeding. The threshold for prophylactic transfusion varies depending on the patient and on the clinical scenario. (See ‘Specific clinical scenarios’ below.)

Predicting spontaneous bleeding — There are no ideal tests for predicting who will bleed spontaneously [12]. Studies of patients with thrombocytopenia suggest that patients can bleed even with platelet counts greater than 50,000/microL [13]. However, bleeding is much more likely at platelet counts less than 5000/microL. Among individuals with platelet counts between 5000/microL and 50,000/microL,clinical findings can be helpful in decision-making regarding platelet transfusion.

The platelet count at which a patient bled previously can be a good predictor of future bleeding.

Petechial bleeding and ecchymoses are generally not thought to be predictive of serious bleeding, whereas mucosal bleeding and epistaxis (so-called “wet” bleeding) are thought to be predictive.

Coexisting inflammation, infection, and fever also increase bleeding risk.

The underlying condition responsible for a patient’s thrombocytopenia also may help in estimating the bleeding risk. As an example, some patients with ITP often tolerate very low platelet counts without bleeding, while patients with some acute leukemias that are associated with coagulopathy (eg, acute promyelocytic leukemia) can have bleeding at higher platelet counts (eg, 30,000 to 50,000/microL). (See ‘Specific clinical scenarios’ below.)

Compared with adults, children with bone marrow suppression may be more likely to experience bleeding at the same degree of thrombocytopenia. In a secondary subgroup analysis of the PLADO trial, in which patients were randomly assigned to different platelet doses, children had more days of bleeding, more severe bleeding, and required more platelet transfusions than adults with similar platelet counts [14]. However, these findings do not suggest a different threshold for platelet transfusion in children, as the increased risk of bleeding was distributed across a wide range of platelet counts.

Tests for platelet-dependent hemostasis (ie, bleeding time, thromboelastography, and other point of care tests) are generally not used to predict bleeding in thrombocytopenic patients. (See “Platelet function testing”, section on ‘The in vivo bleeding time’ and “Platelet function testing”, section on ‘Instruments that simulate platelet function in vitro’.)

Therapeutic versus prophylactic transfusion — By convention, most authors use the term “therapeutic transfusion” to refer both to transfusion of platelets to treat active bleeding and transfusion of platelets in preparation for an invasive procedure that could cause bleeding. The term “prophylactic transfusion” is used to refer to platelet transfusion given to prevent spontaneous bleeding.

We use prophylactic platelet transfusion to prevent spontaneous bleeding in most afebrile patients with platelet counts below 10,000/microL due to bone marrow suppression. We use higher thresholds (ie, 30,000/microL) in patients who are febrile or septic. Patients with acute promyelocytic leukemia (APL) have a coexisting coagulopathy, and we use a platelet transfusion threshold of 30,000 to 50,000/microLfor them. (See ‘Leukemia and chemotherapy’ below.)

Patients with platelet consumption disorders (eg, immune thrombocytopenia [ITP], disseminated intravascular coagulation) and platelet function disorders are typically transfused only for bleeding or, in some cases, invasive procedures. Platelets should not be withheld in bleeding patients with these conditions due to fear of “fueling the fire” of thrombus formation. (See ‘Immune thrombocytopenia (ITP)’ below and ‘TTP or HIT’ below and ‘Platelet function defects’ below.)

Given the need to balance the risk of spontaneous bleeding with the potential complications of unnecessary platelet transfusion, the decision of whether to transfuse platelets based upon a clinical event (ie, for active bleeding or invasive procedures) or at a particular threshold (ie, to prevent spontaneous bleeding) is challenging. Standard practice has evolved to transfusion of platelets at a threshold platelet count of 10,000 to 20,000/microL for most patients with severe hypoproliferative thrombocytopenia due to hematologic malignancies, cytotoxic chemotherapy, and hematopoietic cell transplant (HCT) [15]. However, the risks and benefits of reserving platelet transfusion for active bleeding episodes in these patients continue to be evaluated [7,16-19].

In a randomized trial, 400 patients with acute myeloid leukemia (AML; patients with APL were excluded) and patients undergoing autologous HCT for hematologic malignancies were assigned to receive platelet transfusions when morning platelet counts were ≤10,000/microL or only for active bleeding [20]. Patients transfused only for active bleeding received fewer platelet transfusions during the 14-day period after induction or consolidation chemotherapy (1.63 versus 2.44 per patient, a 33.5 percent reduction). However, among patients with AML who were transfused only for active bleeding, there were more episodes of major bleeding (six cerebral, four retinal, and one vaginal) and there were two fatal intracranial hemorrhages compared with four retinal hemorrhages among patients transfused for a platelet count ≤10,000/microL. Patients undergoing HCT also experienced more bleeding episodes when transfused only for active bleeding, but most of these were minor.

In another randomized trial, 600 patients with hematologic malignancies receiving chemotherapy, autologous, or allogeneic HCT were assigned to receive platelet transfusion for a platelet count ≤10,000/microL or only for active bleeding (the Trial of Prophylactic Platelets [TOPPS]) [21-23]. Compared with those who received prophylactic transfusions, patients transfused only for active bleeding received fewer platelet transfusions during the 30-day period after randomization, but had a higher incidence of major bleeding (50 versus 43 percent) and a shorter time to first bleed (1.2 versus 1.7 days) [24]. There were no differences in the duration of hospitalization, and no deaths due to bleeding. In a predefined subgroup analysis, patients undergoing autologous HCT had similar rates of major bleeding whether they were transfused for a platelet count≤10,000/microL or only for active bleeding (45 and 47 percent).

The findings from these trials support continued use of prophylactic transfusion for patients with hematologic malignancies and HCT until further data become available. Although the findings suggest that reserving platelet transfusion for active bleeding may be safe for some adults undergoing autologous HCT, such a strategy requires intensive monitoring and the ability to perform immediate imaging for suspected CNS or ocular bleeding. We do not recommend reserving platelet transfusion for active bleeding in patients with HCT outside of highly specialized centers with the ability to support this level of vigilance.

SPECIFIC CLINICAL SCENARIOS — There are several common clinical scenarios that raise the questions of whether to transfuse patients prophylactically to prevent bleeding, and, if prophylactic transfusion is used, of what platelet count is the best threshold for transfusion.

Leukemia and chemotherapy — Patients with leukemia, hematopoietic cell transplant (HCT), or those being treated with cytotoxic chemotherapy have a suppressed bone marrow that cannot produce adequate platelets. We use prophylactic transfusion in these settings. The thresholds suggested below apply to patients with thrombocytopenia who are afebrile and without active infection. If fever or sepsis is present, higher thresholds may be needed.

Acute myeloid leukemia (AML) – Patients with AML can have suppressed bone marrow from AML, chemotherapy, or HCT. We use standard dose prophylactic transfusion of these patients at a threshold platelet count of10,000/microL, and transfusion for any bleeding greater than petechial bleeding. (See ‘Dose’ below.)

This approach is in line with the 2001 American Society for Clinical Oncology (ASCO) guidelines (table 1) and a practice guideline from the AABB [25]. It is supported by randomized trials comparing prophylactic (ie, threshold-based) and therapeutic platelet transfusion, in which patients who did not receive prophylactic transfusion had more severe bleeding [20,24,26]. (See ‘Therapeutic versus prophylactic transfusion’ above and “Overview of the complications of acute myeloid leukemia”, section on ‘Bleeding’.)

Acute promyelocytic leukemia (APL) – Patients with APL differ from other patients with AML because they often have an associated coagulopathy that puts them at high risk for disseminated intravascular coagulation and bleeding. We prophylactically transfuse these patients at a platelet count of 30,000 to50,000/microL, and treat any sign of bleeding, especially central nervous system bleeding, with immediate platelet transfusion. (See “Clinical manifestations, pathologic features, and diagnosis of acute promyelocytic leukemia in adults”, section on ‘Disseminated intravascular coagulation’ and“Initial treatment of acute promyelocytic leukemia in adults”, section on ‘Control of coagulopathy’.)

Acute lymphoblastic leukemia (ALL) – Patients with ALL have thrombocytopenia from bone marrow suppression. In addition, these patients are often treated with L-asparaginase, which causes severe hypofibrinogenemia. However, the risk of life-threatening bleeding is low. As an example, in over 2500 children with ALL, only two intracranial hemorrhages occurred, and they were associated with hyperleukocytosis in one case and intracerebral fungal infection in the other [9]. We transfuse adults with ALL at a threshold platelet count of 10,000/microL. The use of platelet transfusion in children with ALL is discussed separately. (See “Overview of the treatment of acute lymphoblastic leukemia in children and adolescents”, section on ‘Bleeding’.)

Chemotherapy for solid tumors – Cancer chemotherapy often makes patients thrombocytopenic from bone marrow suppression. Randomized trials of platelet transfusion threshold in this population have not been performed. Observational studies support a prophylactic platelet transfusion threshold of 10,000/microL[26]. A threshold of 20,000/microL may be appropriate for patients with necrotic tumors. These recommendations are generally consistent with the ASCO 2001 Guidelines (table 1) [26].

Hematopoietic cell transplant (HCT) – Chemotherapy and radiation therapy administered as part of the conditioning regimen for HCT can be highly bone marrow suppressive, depending on the doses used. We use standard dose prophylactic transfusion of these patients at a threshold platelet count of10,000/microL, and therapeutic transfusion for any bleeding greater than petechial bleeding. (See “Hematopoietic support after hematopoietic cell transplantation”, section on ‘Platelet transfusion’.)

Aplastic anemia – Patients with aplastic anemia do not have a malignancy, but they may have severe thrombocytopenia, and they may be candidates for HCT. Issues related to platelet transfusion in these patients are discussed separately. (See “Treatment of aplastic anemia in adults”.)

Prophylactic platelet transfusion for a platelet count ≤10,000/microL in hospitalized patients with thrombocytopenia from therapy-induced bone marrow suppression is consistent with a practice guideline from the AABB [25].

Immune thrombocytopenia (ITP) — Individuals with immune thrombocytopenia produce anti-platelet antibodies that destroy circulating platelets and megakaryocytes in the bone marrow. Circulating platelets in patients with ITP tend to be highly functional, and platelet counts tend to be well above 30,000/microL. Bleeding is rare even in patients with severe thrombocytopenia (ie, platelet count <30,000/microL). (See “Immune thrombocytopenia (ITP) in adults: Clinical manifestations and diagnosis”, section on ‘Pathogenesis’.)

Our general approach to platelet transfusion in patients with ITP is to transfuse for bleeding rather than at a specific platelet count. (See “Immune thrombocytopenia (ITP) in adults: Initial treatment and prognosis”, section on ‘Indications for treatment’.)

TTP or HIT — Thrombotic thrombocytopenic purpura (TTP) and heparin-induced thrombocytopenia (HIT) are disorders in which platelet consumption causes thrombocytopenia and an increased risk of bleeding; but the underlying platelet activation in these conditions also increases the risk of thrombosis.

Platelet transfusions can be helpful or even life-saving in patients with these conditions who are bleeding and/or have anticipated bleeding due to a required invasive procedure (eg, placement of a central venous catheter), and platelet transfusion should not be withheld from a bleeding patient due to concerns that platelet transfusion will exacerbate thrombotic risk. However, platelet transfusions may cause a slightly increased risk of thrombosis in patients with these conditions; thus, we do not use prophylactic platelet transfusions routinely in patients with TTP or HIT in the absence of bleeding or a required invasive procedure.

Support for this approach comes from a large retrospective review of hospitalized patients with TTP and HIT, in which platelet transfusion was associated with a very slight increased risk of arterial thrombosis but not venous thromboembolism [27]. In contrast, the review found that patients with immune thrombocytopenia (ITP) had no increased risk of arterial or venous thrombosis with platelet transfusion. Of note, this was a retrospective study in which sicker patients were more likely to have received platelets, and the temporal relationships between platelet transfusions and thromboses were not assessed.

TTP – Of 10,624 patients with TTP in the large review mentioned above, approximately 10 percent received a platelet transfusion [27]. Arterial thrombosis occurred in 1.8 percent of patients who received platelets, versus 0.4 percent of patients who did not (absolute increase, 1.4 percent; adjusted odds ratio [OR], 5.8; 95% CI, 1.3-26.6). The rate of venous thrombosis was not different in those who received platelets and those who did not (adjusted OR 1.1; 95% CI 0.5-2.2).

In contrast, a systematic review of patients with TTP who received platelet transfusions, which included retrospective data for 358 patients and prospective data for 54 patients, did not find clear evidence that platelet transfusions were associated with adverse outcomes [28].

HIT – Of 6332 patients with HIT in the large review mentioned above, approximately 7 percent received a platelet transfusion [27]. Arterial thrombosis occurred in 6.9 percent of patients who received platelets, versus 3.1 percent of patients who did not (absolute increase, 3.8 percent; adjusted OR, 3.4; 95% CI, 1.2-9.5). The rate of venous thrombosis was not different in those who received platelets and those who did not (adjusted OR 0.8; 95% CI 0.4-1.7).

In a series of four patients with HIT who received platelet transfusions, two of three with active bleeding had cessation of bleeding following platelet transfusion, and no thromboses occurred; a literature review was not able to identify any complications clearly attributable to platelet transfusion [29].

Management of TTP and HIT is discussed in detail separately. (See “Acquired TTP: Initial treatment” and “Management of heparin-induced thrombocytopenia”.)

Liver disease and DIC — Patients with liver disease and DIC have a complex mixture of procoagulant and anticoagulant defects along with thrombocytopenia, and therefore they are at risk for thrombosis and bleeding. There is no evidence to support the administration of platelets in these patients if they are not bleeding. However, platelet transfusion is justified in patients who have serious bleeding, are at high risk for bleeding (eg, after surgery), or require invasive procedures. (See “Clinical features, diagnosis, and treatment of disseminated intravascular coagulation in adults”, section on ‘Prevention/treatment of bleeding’ and “Hemostatic abnormalities in patients with liver disease”, section on ‘Bleeding’.)

Platelet function defects — Platelet function defects can be inherited or acquired, and may be associated with thrombocytopenia or a normal platelet count. Platelet transfusion in these settings is typically reserved for bleeding.

Inherited diseases Platelet function is impaired in Wiskott-Aldrich syndrome, Glanzmann thrombasthenia, and Bernard-Soulier syndrome. Bleeding in patients with these conditions is treated with platelet transfusion, along with other hemostatic agents discussed below. (See “Congenital and acquired disorders of platelet function”, section on ‘Inherited disorders of platelet function’ and‘Alternatives to platelet transfusion’ below.)

Acquired conditions – Uremia, diabetes mellitus, myeloproliferative disorders, and other medical conditions can impair platelet function. Bleeding risk can be reduced by treating the underlying condition. Platelet transfusion is typically reserved for major bleeding in these conditions. (See “Congenital and acquired disorders of platelet function”, section on ‘Acquired platelet functional disorders’.)

Patients who are febrile or septic can have impaired platelet function. We transfuse these patients for bleeding. We also use a higher threshold for when fever or sepsis coexist with thrombocytopenia (eg, in patients with leukemia). (See ‘Leukemia and chemotherapy’ above.)

Antiplatelet agentsAspirin, nonsteroidal antiinflammatory drugs (NSAIDs),dipyridamole, ADP receptor (P2Y12) inhibitors (eg, clopidogrel, ticlopidine), andGPIIb/IIIa antagonists (eg, abciximab, eptifibatide) are used to prevent thrombosis by interfering with normal platelet function. The antiplatelet effects of these agents are weakest with aspirin and more potent with the P2Y12inhibitors. (See “Platelet biology”, section on ‘Drugs with antiplatelet actions’.)

Typically, the approach to treating mild bleeding in a patient taking an antiplatelet agent is to discontinue the drug, assuming a favorable risk-benefit ratio. Although data are limited, platelet transfusion appears to be the best option in patients taking antiplatelet agents who experience severe bleeding [30].

Patients taking these agents may also require urgent surgical procedures (eg, coronary artery bypass grafting, neurosurgical interventions, and others). The role of platelet transfusion in this setting is not well defined. Some clinicians give prophylactic platelet transfusions to patients taking antiplatelet drugs who require major surgery, while other clinicians use platelet transfusion only to treat excessive surgical bleeding [30,31]. These cases can be complex, and we favor an individualized approach based on the complete clinical picture.

Other medications – Other medications may impair platelet function. As an example, the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib inhibits platelet aggregation by interfering with activation signals. The role of platelet transfusion in patients with ibrutinab-associated bleeding despite a sufficient platelet count is unknown, and decisions are individualized according to the platelet count and the severity and site of bleeding.

Massive blood loss — Patients with massive blood loss from surgery or trauma are transfused with red blood cells (RBC), resulting in partial replacement of the blood volume with a product lacking platelets and clotting factors. In this setting, we transfuse RBC, fresh frozen plasma (FFP), and random donor platelet units in a 1:1:1 ratio. As an example, a patient transfused with six units of RBC would also receive six units of pooled platelets or one apheresis unit (both of which provide approximately 5 x 1011 platelets) and six units of FFP. (See “Initial evaluation and management of shock in adult trauma”, section on ‘Transfusion of blood products’.).

Cardiopulmonary bypass — Patients who undergo prolonged cardiopulmonary bypass can have thrombocytopenia and impaired platelet function. The use of platelet transfusion in the cardiopulmonary bypass setting is discussed separately. (See“Congenital and acquired disorders of platelet function”, section on ‘Cardiopulmonary bypass’ and “Early noncardiac complications of coronary artery bypass graft surgery”, section on ‘Bleeding’.)

Advertisements

Read Full Post »


Hematologic Malignancies , Table of Contents

Writer and Curator:  Larry H. Bernstein, MD, FCAP

Hematologic Malignancies 

Not excluding lymphomas [solid tumors]

The following series of articles are discussions of current identifications, classification, and treatments of leukemias, myelodysplastic syndromes and myelomas.

2.4 Hematological Malignancies

2.4.1 Ontogenesis of blood elements

Erythropoiesis

White blood cell series: myelopoiesis

Thrombocytogenesis

2.4.2 Classification of hematopoietic cancers

Primary Classification

Acute leukemias

Myelodysplastic syndromes

Acute myeloid leukemia

Acute lymphoblastic leukemia

Myeloproliferative Disorders

Chronic myeloproliferative disorders

Chronic myelogenous leukemia and related disorders

Myelofibrosis, including chronic idiopathic

Polycythemia, including polycythemia rubra vera

Thrombocytosis, including essential thrombocythemia

Chronic lymphoid leukemia and other lymphoid leukemias

Lymphomas

Non-Hodgkin Lymphoma

Hodgkin lymphoma

Lymphoproliferative disorders associated with immunodeficiency

Plasma Cell dyscrasias

Mast cell disease and Histiocytic neoplasms

Secondary Classification

Nuance – PathologyOutlines

2.4.3 Diagnostics

Computer-aided diagnostics

Back-to-Front Design

Realtime Clinical Expert Support

Regression: A richly textured method for comparison and classification of predictor variables

Converting Hematology Based Data into an Inferential Interpretation

A model for Thalassemia Screening using Hematology Measurements

Measurement of granulocyte maturation may improve the early diagnosis of the septic state.

The automated malnutrition assessment.

Molecular Diagnostics

Genomic Analysis of Hematological Malignancies

Next-generation sequencing in hematologic malignancies: what will be the dividends?

Leveraging cancer genome information in hematologic malignancies.

p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies

Genomic approaches to hematologic malignancies

2.4.4 Treatment of hematopoietic cancers

2.4.4.1 Treatments for leukemia by type

2.4.4..2 Acute lymphocytic leukemias

2.4..4.3 Treatment of Acute Lymphoblastic Leukemia

Acute Lymphoblastic Leukemia

Gene-Expression Patterns in Drug-Resistant Acute Lymphoblastic Leukemia Cells and Response to Treatment

Leukemias Treatment & Management

Treatments and drugs

2.4.5 Acute Myeloid Leukemia

New treatment approaches in acute myeloid leukemia: review of recent clinical studies

Novel approaches to the treatment of acute myeloid leukemia.

Current treatment of acute myeloid leukemia

Adult Acute Myeloid Leukemia Treatment (PDQ®)

2.4.6 Treatment for CML

Chronic Myelogenous Leukemia Treatment (PDQ®)

What`s new in chronic myeloid leukemia research and treatment?

4.2.7 Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia Treatment (PDQ®)

Results from the Phase 3 Resonate™ Trial

Typical treatment of chronic lymphocytic leukemia

4.2.8 Lymphoma treatment

4.2.8.1 Overview

4.2.8.2 Chemotherapy

………………………………..

Chapter 6

Total body irradiation (TBI)

Bone marrow (BM) transplantation

Autologous stem cell transplantation

Hematopoietic stem cell transplantation

Supportive Therapies

Blood transfusions

Erythropoietin

G-CSF (granulocyte-colony stimulating factor)

Plasma exchange (plasmapheresis)

Platelet transfusions

Steroids

Read Full Post »


Hematological Cancer Classification

Author and Curator: Larry H. Bernstein, MD, FCAP

 

 

Introduction to leukemias and lymphomas

 

2.4.1 Ontogenesis of the blood elements: hematopoiesis

http://www.britannica.com/EBchecked/topic/69747/blood-cell-formation

Blood cells are divided into three groups: the red blood cells (erythrocytes), the white blood cells (leukocytes), and the blood platelets (thrombocytes). The white blood cells are subdivided into three broad groups: granulocytes, lymphocytes, and monocytes.

Blood cells do not originate in the bloodstream itself but in specific blood-forming organs, notably the marrow of certain bones. In the human adult, the bone marrow produces all of the red blood cells, 60–70 percent of the white cells (i.e., the granulocytes), and all of the platelets. The lymphatic tissues, particularly the thymus, the spleen, and the lymph nodes, produce the lymphocytes (comprising 20–30 percent of the white cells). The reticuloendothelial tissues of the spleen, liver, lymph nodes, and other organs produce the monocytes (4–8 percent of the white cells). The platelets, which are small cellular fragments rather than complete cells, are formed from bits of the cytoplasm of the giant cells (megakaryocytes) of the bone marrow.

In the human embryo, the first site of blood formation is the yolk sac. Later in embryonic life, the liver becomes the most important red blood cell-forming organ, but it is soon succeeded by the bone marrow, which in adult life is the only source of both red blood cells and the granulocytes. Both the red and white blood cells arise through a series of complex, gradual, and successive transformations from primitive stem cells, which have the ability to form any of the precursors of a blood cell. Precursor cells are stem cells that have developed to the stage where they are committed to forming a particular kind of new blood cell.

In a normal adult the red cells of about half a liter (almost one pint) of blood are produced by the bone marrow every week. Almost 1 percent of the body’s red cells are generated each day, and the balance between red cell production and the removal of aging red cells from the circulation is precisely maintained.

Cells-in-the-Bone-Marrow-1024x747

http://interactive-biology.com/wp-content/uploads/2012/07/Cells-in-the-Bone-Marrow-1024×747.png

Erythropoiesis

http://www.interactive-biology.com/3969/erythropoiesis-formation-of-red-blood-cells/

Erythropoiesis – Formation of Red Blood Cells

Because of the inability of erythrocytes (red blood cells) to divide to replenish their own numbers, the old ruptured cells must be replaced by totally new cells. They meet their demise because they don’t have the usual specialized intracellular machinery, which controls cell growth and repair, leading to a short life span of 120 days.

This short life span necessitates the process erythropoiesis, which is the formation of red blood cells. All blood cells are formed in the bone marrow. This is the erythrocyte factory, which is soft, highly cellar tissue that fills the internal cavities of bones.

Erythrocyte differentiation takes place in 8 stages. It is the pathway through which an erythrocyte matures from a hemocytoblast into a full-blown erythrocyte. The first seven all take place within the bone marrow. After stage 7 the cell is then released into the bloodstream as a reticulocyte, where it then matures 1-2 days later into an erythrocyte. The stages are as follows:

  1. Hemocytoblast, which is a pluripotent hematopoietic stem cell
  2. Common myeloid progenitor, a multipotent stem cell
  3. Unipotent stem cell
  4. Pronormoblast
  5. Basophilic normoblast also called an erythroblast.
  6. Polychromatophilic normoblast
  7. Orthochromatic normoblast
  8. Reticulocyte

These characteristics can be seen during the course of erythrocyte maturation:

  • The size of the cell decreases
  • The cytoplasm volume increases
  • Initially there is a nucleus and as the cell matures the size of the nucleus decreases until it vanishes with the condensation of the chromatin material.

Low oxygen tension stimulates the kidneys to secrete the hormone erythropoietin into the blood, and this hormone stimulates the bone marrow to produce erythrocytes.

Rarely, a malignancy or cancer of erythropoiesis occurs. It is referred to as erythroleukemia. This most likely arises from a common myeloid precursor, and it may occur associated with a myelodysplastic syndrome.

Summary of erythrocyte maturation

White blood cell series: myelopoiesis

http://www.nlm.nih.gov/medlineplus/ency/presentations/100151_3.htm

http://www.nlm.nih.gov/medlineplus/ency/images/ency/fullsize/15220.jpg

There are various types of white blood cells (WBCs) that normally appear in the blood: neutrophils (polymorphonuclear leukocytes; PMNs), band cells (slightly immature neutrophils), T-type lymphocytes (T cells), B-type lymphocytes (B cells), monocytes, eosinophils, and basophils. T and B-type lymphocytes are indistinguishable from each other in a normal slide preparation. Any infection or acute stress will result in an increased production of WBCs. This usually entails increased numbers of cells and an increase in the percentage of immature cells (mainly band cells) in the blood. This change is referred to as a “shift to the left” People who have had a splenectomy have a persistent mild elevation of WBCs. Drugs that may increase WBC counts include epinephrine, allopurinol, aspirin, chloroform, heparin, quinine, corticosteroids, and triamterene. Drugs that may decrease WBC counts include antibiotics, anticonvulsants, antihistamine, antithyroid drugs, arsenicals, barbiturates, chemotherapeutic agents, diuretics and sulfonamides.   (Updated by: David C. Dugdale, III, MD)

https://www.med-ed.virginia.edu/courses/path/innes/nh/wcbmaturation.cfm

Note that the mature forms of the myeloid series (neutrophils, eosinophils, basophils), all have lobed (segmented) nuclei. The degree of lobation increases as the cells mature.

The earliest recognizable myeloid cell is the myeloblast (10-20m dia) with a large round to oval nucleus. There is fine diffuse immature chromatin (without clumping) and a prominant nucleolus.

The cytoplasm is basophilic without granules. Although one may see a small golgi area adjacent to the nucleus, granules are not usually visible by light microscopy. One should not see blast cells in the peripheral blood.

myeloblast x100b

https://www.med-ed.virginia.edu/courses/path/innes/images/nhjpeg/nh%20myeloblast%20x100b.jpeg

The promyelocyte (10-20m) is slightly larger than a blast. Its nucleus, although similar to a myeloblast shows slight chromatin condensation and less prominent nucleoli. The cytoplasm contains striking azurophilic granules or primary granules. These granules contain myeloperoxidase, acid phosphatase, and esterase enzymes. Normally no promyelocytes are seen in the peripheral blood.

At the point in development when secondary granules can be recognized, the cell becomes a myelocyte.

promyelocyte x100

https://www.med-ed.virginia.edu/courses/path/innes/images/nhjpeg/nh%20promyelocyte%20×100%20a.jpeg

Myelocytes (10-18m) are not normally found in the peripheral blood. Nucleoli may not be seen in the late myelocyte. Primary azurophilic granules are still present, but secondary granules predominate. Secondary granules (neut, eos, or baso) first appear adjacent to the nucleus. In neutrophils this is the “dawn” of neutrophilia.

Metamyelocytes (10-18m) have kidney shaped indented nuclei and dense chromatin along the nuclear membrane. The cytoplasm is faintly pink, and they have secondary granules (neutro, eos, or baso). Zero to one percent of the peripheral blood white cells may be metamyelocytes (juveniles).

metamyelocyte x100

https://www.med-ed.virginia.edu/courses/path/innes/images/nhjpeg/nh%20metamyelocyte%20×100.jpeg

Bands, slightly smaller than juveniles, are marked by a U-shaped or deeply indented nucleus.

band neutrophilx100a

https://www.med-ed.virginia.edu/courses/path/innes/images/nhjpeg/nh%20band%20x100a.jpeg

Segmented (segs) or polymorphonuclear (PMN) leukocytes (average 14 m dia) are distinguished by definite lobation with thin thread-like filaments of chromatin joining the 2-5 lobes. 45-75% of the peripheral blood white cells are segmented neutrophils.

https://www.med-ed.virginia.edu/courses/path/innes/images/nhjpeg/nh%20neutrophil%20×100%20d.jpeg

Thrombocytogenesis

The incredible journey: From megakaryocyte development to platelet formation

Kellie R. Machlus1,2 and Joseph E. Italiano Jr
JCB 2013; 201(6): 785-796
http://dx.doi.org:/10.1083/jcb.201304054

Large progenitor cells in the bone marrow called megakaryocytes (MKs) are the source of platelets. MKs release platelets through a series of fascinating cell biological events. During maturation, they become polyploid and accumulate massive amounts of protein and membrane. Then, in a cytoskeletal-driven process, they extend long branching processes, designated proplatelets, into sinusoidal blood vessels where they undergo fission to release platelets.

megakaryocyte production of platelets

http://dm5migu4zj3pb.cloudfront.net/manuscripts/26000/26891/medium/JCI0526891.f4.jpg

platelets and the immune continuum nri2956-f3

http://www.nature.com/nri/journal/v11/n4/images/nri2956-f3.jpg

2.4.2 Classification of hematological malignancies
Practical Diagnosis of Hematologic Disoreders. 4th edition. Vol 2.
Kjeldsberg CR, Ed.  ASCP Press.  2006. Chicago, IL.

2.4.2.1 Primary Classification

Acute leukemias

Myelodysplastic syndromes

Acute myeloid leukemia

Acute lymphoblastic leukemia

Myeloproliferative Disorders

Chronic myeloproliferative disorders

Chronic myelogenous leukemia and related disorders

Myelofibrosis, including chronic idiopathic

Polycythemia, including polycythemia rubra vera

Thrombocytosis, including essential thrombocythemia

Chronic lymphoid leukemia and other lymphoid leukemias

Lymphomas

Non-Hodgkin Lymphoma

Hodgkin lymphoma

Lymphoproliferative disorders associated with immunodeficiency

Plasma Cell dyscrasias

Mast cell disease and Histiocytic neoplasms

2.4.2.2 Secondary Classification

2.4.2.3 Nuance – PathologyOutlines
Nat Pernick, Ed.

Leukemia – Acute

Primary referencesacute leukemia-generalAML generalAML classificationtransient abnormal myelopoiesis

Recurrent genetic abnormalities: AML with t(6;9)AML with t(8;21)AML with 11q23 abnormalitiesAML with inv(16) or t(16;16)AML with Down syndromeAML with FLT3 mutationsAML with myelodysplastic related changesAML therapy relatedAPL microgranular variantAPL with t(15;17)APL with t(V;17)APL therapy related

AML not otherwise categorized: minimally differentiated (M0)without maturation (M1)with maturation (M2)M3myelomonocyticmonoblastic and monocyticerythroidmegakaryoblasticCD13/CD33 negativebasophilicmyeloid sarcomaacute panmyelosis with myelofibrosiswith Philadelphia chromosomewith pseudo Chediak-Higashi anomalyhypocellular

ALL: generalWHO classificationwith eosinophilia

PreB ALL: generalt(9;22)t(v;11q23)t(1;19)t(5;14)t(12;21)hyperdiploidyhypodiploidymature B ALL/Burkitt

Other ALL: T ALLambiguous lineagemixed phenotype

AML and related malignancies

Acute myeloid leukemias with recurrent genetic abnormalities:

  • AML with t(8;21)(q22;q22); RUNX1-RUNX1T1
  • AML with inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); CBF&beta-MYH11
  • Acute promyelocytic leukemia with t(15;17)(q22;q12); PML/RAR&alpha and variants
  • AML with t(9;11)(p22;q23); MLLT3-MLL
  • AML with t(6;9)(p23;q34); DEK-NUP214
  • AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1
  • AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1
  • AML with mutated NPM1*
  • AML with mutated CEBPA*

* provisional

Acute myeloid leukemia with myelodysplasia related changes

Therapy related acute myeloid leukemia

  • Alkylating agent related
  • Topoisomerase II inhibitor related (some maybe lymphoid)

Acute myeloid leukemia not otherwise categorized:

  • AML minimally differentiated (M0)
  • AML without maturation (M1)
  • AML with maturation (M2)
  • Acute myelomonocytic leukemia (M4)
  • Acute monoblastic and monocytic leukemia (M5a, M5b)
  • Acute erythroid leukemia (M6)
  • Acute megakaryoblastic leukemia (M7)
  • Acute basophilic leukemia
  • Acute panmyelosis with myelofibrosis

Myeloid Sarcoma

Myeloid proliferations related to Down syndrome:

  • Transient abnormal myelopoeisis
  • Myeloid leukemia associated with Down syndrome

Blastic plasmacytoid dentritic cell neoplasm:

Acute leukemia of ambiguous lineage:

  • Acute undifferentiated leukemia
  • Mixed phenotype acute leukemia with t(9;22)(q34;q11.2); BCR-ABL1
  • Mixed phenotype acute leukemia with t(v;11q23); MLL rearranged
  • Mixed phenotype acute leukemia, B/myeloid, NOS
  • Mixed phenotype acute leukemia, T/myeloid, NOS
  • Mixed phenotype acute leukemia, NOS, rare types
  • Other acute leukemia of ambiguous lineage
  • References: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue (IARC, 2008), Discovery Medicine 2010, eMedicine

Acute lymphocytic leukemia

General
=================================================================

  • WHO classification system includes former FAB classifications ALL-L1 and L2
    ● FAB L3 is now considered Burkitt lymphoma

WHO classification of acute lymphoblastic leukemia
=================================================================

Precursor B lymphoblastic leukemia / lymphoblastic lymphoma:
● ALL with t(9;22)(q34;q11.2); BCR-ABL (Philadelphia chromosome)
● ALL with t(v;11q23) (MLL rearranged)
● ALL with t(1;19)(q23;p13.3); TCF3-PBX1 (E2A-PBX1)
● ALL with t(12;21)(p13;q22); ETV6-RUNX1 (TEL-AML1)
● Hyperdiploid > 50
● Hypodiploid
● t(5;14)(q31;q32); IL3-IGH

Precursor T lymphoblastic leukemia / lymphoma

Additional references
=================================================================

Mixed phenotype acute leukemia (MPAL)

General
=================================================================

  • De novo acute leukemia containing separate populations of blasts of more than one lineage (bilineal or bilineage), or a single population of blasts co-expressing antigens of more than one lineage (biphenotypic)Excludes:
    ● Acute myeloid leukemia (AML) with recurrent translocations t(8;21), t(15;17) or inv(16)
    ● Leukemias with FGFR1 mutations
    ● Chronic myelogenous leukemia (CML) in blast crisis
    ● Myelodysplastic syndrome (MDS)-related AML and therapy-related AML, even if they have MPAL immunophenotypeCriteria for biphenotypic leukemia:
    ● Score of 2 or more for each of two separate lineages:The European Group for the Immunological Classification of Leukemias (EGIL) scoring system2008 WHO classification of acute leukemias of ambiguous lineage 

Prognosis
=================================================================

  • Poor, overall survival of 18 months
    ● Young age, normal karyotype and ALL induction therapy are associated with favorable survival
    ● Ph+ is a predictor for poor prognosis
    ● Bone marrow transplantation should be considered in first remission

Major Categories

MPAL with t(9;22)(q34;q11.2); BCR-ABL1
=================================================================

  • 20% of all MPAL
    ● Blasts with t(9;22)(q34;q11.2) translocation or BCR-ABL1 rearrangement (Ph+) without history of CML
    ● Majority in adults
    ● High WBC counts● Most of the cases B/myeloid phenotype
    ● Rare T/myeloid, B and T lineage, or trilineage leukemiasMorphology:
    ● Many cases show a dimorphic blast population, one resembling myeloblasts and the other lymphoblastsCytogenetic abnormalities:
    ● Conventional karyotyping for t(9;22), FISH or PCR for BCR-ABL1 translocation
    ● Additional complex karyotypes
    ● Ph+ is a poor prognostic factor for MPAL, with a reported median survival of 8 months
    ● Worse than patients of all other types of MPAL

MPAL with t(v;11q23); MLL rearranged
=================================================================

  • Meeting the diagnostic criteria for MPAL with blasts bearing a translocation involving the 11q23 breakpoint (MLL gene)
    ● MPAL with MLL rearranged rare
    ● More often seen in children and relatively common in infancy
    ● High WBC counts
    ● Poor prognosis
    ● Dimorphic blast population, with one resembling monoblasts and the other resembling lymphoblasts
    ● Lymphoblast population often shows a CD19+, CD10- B precursor immunophenotype, frequently CD15+
    ● Expression of other B markers usually weak
    ● Translocations involving MLL gene include t(4;11)(q21;q23), t(11;19)(q23;p13), and t(9;11)(p22;q23)
    ● Cases with chromosome 11q23 deletion should not be classified in this category

B cell acute lymphoblastic leukemia (ALL) / lymphoblastic lymphoma (LBL)

General

=================================================================

  • Current 2008 WHO classification: B lymphoblastic leukemia / lymphoma, NOS or B lymphoblastic leukemia / lymphoma with recurrent genetic abnormalities
  • See also lymphomas: B cell chapter
  • Also called B cell acute lymphoblastic leukemia / lymphoblastic lymphoma, pre B ALL / LBL
  • Usually children
  • B acute lymphoblastic leukemia presents with pancytopenia due to extensive marrow involvement, stormy onset of symptoms, bone pain due to marrow expansion, hepatosplenomegaly due to neoplastic infiltration, CNS symptoms due to meningeal spread and testicular involvement
  • B acute lymphoblastic lymphoma often presents with cutaneous nodules, bone or nodal involvement, < 25% lymphoblasts in bone marrow and peripheral blood; aleukemic cases are usually asymptomatic
  • Depending on specific leukemia, arises in either hematopoietic stem cell or B-cell progenitor
  • Tumors are derived from pre-germinal center naive B cells with unmutated VH region genes
  • Have multiple immunophenotyping aberrancies relative to normal B cell precursors (hematogones); at relapse, 73% show loss of 1+ aberrance and 60% show new aberrancies (Am J Clin Pathol 2007;127:39)

Prognostic features

=================================================================

  • Favorable prognosis: age 1-10 years, female, white; preB phenotype, hyperdiploidy>50, t(12,21), WBC count at presentation <50×108/L, non-traumatic tap with no blasts in CNS, rapid response to chemotherapy < 5% blasts on morphology on day 15, remission status after induction <5% blasts on morphology and <0.01% blast on flow or PCR, CD10+
  • Intermediate prognosis: hyperdiploidy 47-50, diploid, 6q- and rearrangements of 8q24
  • Unfavorable prognosis: under age 1 (usually have 11q23 translocations) or over age 10; t(9;22) (but not if age 59+ years, Am J Clin Pathol 2002;117:716); male, > 50×108/L WBC at presentation, hypodiploidy, near tetraploidy, 17p- and MLL rearrangements t(v;11q23); CD10-; non-traumatic tap with > 5% blasts or traumatic tap (7%); also increased microvessel staining using CD105 in children (Leuk Res 2007;31:1741), MDR1 expression in children (Oncol Rep 2004;12:1201) and adults (Blood 2002;100:974), 25%+ blasts on morphology on day 15, remission status after induction ≥ 5% blasts on morphology and ≥ 0.1% blasts on flow or PCR

Case reports

=================================================================

  • 12 month old girl and 13 month old boy with mature phenotype but no translocations (Arch Pathol Lab Med 2003;127:1340)
  • 56 year old man with ALL arising from follicular lymphoma (Arch Pathol Lab Med 2002;126:997)
  • 76 year old man with basal cell carcinoma (Diagn Pathol 2007;2:32)
  • With hemophagocytic lymphohistiocytosis (Pediatr Blood Cancer 2008;50:381)

Treatment

================================================================

  • Chemotherapy cures more children than adults; adolescents benefit from intensive regimens (Hematology Am Soc Hematol Educ Program 2005:123)

Micro description

=================================================================

  • Bone marrow smears: small to intermediate blast-like cells with scant, variably basophilic cytoplasm, round / oval or convoluted nuclei, fine chromatin and indistinct nucleoli; frequent mitotic figures; may have “starry sky” appearance similar to Burkitt lymphoma; may have large lymphoblasts with 1-4 prominent nucleoli resembling myeloblasts; usually no sclerosis
  • Bone marrow biopsy: usually markedly hypercellular with reduction of trilinear maturation; cells have minimal cytoplasm, medium sized nuclei that are often convoluted, moderately dense chromatin and indistinct nucleoli, brisk mitotic activity
  • Other tissues: may have “starry sky” appearance similar to Burkitt lymphoma; collagen dissection, periadipocyte growth pattern and single cell linear filing

Chronic Leukemia

Chronic Myeloid Neoplasms

Myelodysplastic syndromes (MDS): general, WHO classification, childhood, refractory anemia, refractory anemia with ringed sideroblasts, refractory cytopenia with multilineage dysplasia, refractory anemia with excess blasts, 5q-syndrome, therapy related, unclassified, arsenic toxicity

Myeloproliferative neoplasms (MPN): general, WHO classification, chronic eosinophilic leukemia, chronic myelogenous leukemia, chronic neutrophilic leukemia, essential thrombocythemia, hypereosinophilic syndrome, mast cell disease, polycythemia vera, primary myelofibrosis, unclassifiable

MDS/MPN: general, WHO classification, atypical CML, chronic myelomonocytic leukemia (CMML), chronic myelomonocytic leukemia with eosinophilia, juvenile myelomonocytic leukemia, unclassifiable

Myeloid neoplasms associated with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1: PDGFRA, PDGFRB, FGFR1

Miscellaneous: transient myeloproliferative disorder of Downís syndrome

Lymphoma and plasma cell neoplasms

Lymph nodes: normal development-generalB cellsT cellsNK cellsnormal histologygrossing lymph nodesfeatures to report

Molecular testing: theoryFISHnorthern blotPCRsouthern blot

Non-Hodgkin lymphoma: generalcytogeneticsstagingstaging-pediatricmorphologic clueshemophagocytic syndromechemotherapeutic atypia

B cell disorders: generalpost-rituximabbone marrow biopsyclassification-historicalWHO classification

B cell lymphoma subtypes: age-related EBV-associatedALK positive large cellBurkittunclassifiable-intermediate between Burkitt and diffuse large B cell lymphomaCLL
diffuse large B cell: 
diffuse-NOSCD5+T cell / histiocyte richprimary cutaneous-generalprimary cutaneous-legprimary sites-other
follicular: 
generalchildhoodcutaneousGI
hairy cell leukemiaHCL variantintravascular large B celllymphomatoid granulomatosislymphoplasmacyticmantle cell-classicmantle cell-blastoidmarginal zone-generalmarginal zone-MALTMALT-primary sitesmarginal zone-nodalmediastinal (thymic)plasmablasticpre B lymphoblastic leukemia/lymphomaprimary effusionprolymphocytic leukemiapyothorax associatedSLLsplenic marginal zonesplenic lymphoma with villous lymphocytes

Plasma cell neoplasms: generalmyelomaplasmacytomaheavy chain diseaseprimary amyloidosisMGUSOsteosclerotic myeloma (POEMS)cryoglobulinemia

T/NK cell disorders: generalWHO classificationadult T cellaggressive NK cell leukemiaanaplastic large cell ALK+ALK-angioimmunoblastic T cellblastic plasmacytoidchronic lymphoproliferative disorders of NK cellscutaneous CD4+ small/medium sized T cell lymphomacutaneous CD30 positive T cell lymphoproliferative disorderscutaneous gamma delta T cell lymphomaenteropathyepidermotropic CD8+ T cell lymphomahepatosplenicindolent T cell proliferationsmycosis fungoidesNK/T cell lymphoma-nasal typenodal CD8+ cytotoxic T cellnonB nonT lymphoblasticperipheral T cell lymphoma, NOSprimary effusion lymphomaSezary syndromestagingsubcutaneous panniculitis-likeT cell large granular lymphocytic leukemiaT cell lymphoblastic leukemia/lymphomaT cell prolymphocytic leukemia

Hodgkin lymphoma: general/stagingclassiclymphocyte depletedlymphocyte rich classicalmixed cellularitynodular lymphocyte predominantnodular sclerosis

Post-transplantation: generalWHO classificationplasmacytic hyperplasia/IM-like lesionspolymorphic B cell lymphoproliferative disordersmonomorphic B cell lymphoproliferative disordersothergraft versus host disease

Other: AIDS associated-generalAIDS associated-examplesEBV+ T cell lymphoproliferative disorders of childhoodprimary immune disorders related

Myeloproliferative neoplasms (MPN)

WHO 2008 – Myeloproliferative neoplasms (MPN) 

General
=================================================================

  • Chronic myelogenous leukemia
    ● Polycythemia vera
    ● Essential thrombocythemia
    ● Primary myelofibrosis
    ● Chronic neutrophilic leukemia
    ● Chronic eosinophilic leukemia, not otherwise categorized
    ● Mast cell disease
    ● MPNs, unclassifiable

WHO 2001 – Chronic myeloproliferative diseases 

Definition
=================================================================

  • Chronic myelogenous leukemia (Philadelphia chromosome, t(9;22)(q34;q11), BCR-ABL positive)
    ● Chronic neutrophilic leukemia
    ● Chronic eosinophilic leukemia (and the hypereosinophilic syndrome)
    ● Polycythemia vera
    ● Chronic idiopathic myelofibrosis (with extramedullary hematopoiesis)
    ● Essential thrombocythemia
    ● Chronic myeloproliferative disease, unclassifiable

Additional references
=================================================================

The World Health Organization (WHO) classification of the myeloid neoplasms  James W. Vardiman, Nancy Lee Harris, and Richard D. Brunning
Blood 2002; 100(7)  http://dx.doi.org/10.1182/blood-2002-04-1199

Lymphoma – Non B cell neoplasms

T/NK cell disorders/WHO classification (2008)

Principles of classification
=================================================================

  • Based on all available information (morphology, immunophenotype, genetics, clinical)
    ● No one antigenic marker is specific for any neoplasm (except ALK1)
    ● Immune profiling less helpful in subclassification of T cell lymphomas then B cell lymphomas
    ● Certain antigens commonly associated with specific disease entities but not entirely disease specific
    ● CD30: common in anaplastic large cell lymphoma but also classic Hodgkin lymphoma and other B and T cell lymphomas
    ● CD56: characteristic for nasal NK/T cell lymphoma, but also other T cell neoplasms and plasma cell disorders
    ● Variation of immunophenotype within a given disease (hepatosplenic T cell lymphoma: usually γδ but some are αβ)
    ● Recurrent genetic alterations have been identified for many B cell lymphomas but not for most T cell lymphomas
    ● No attempt to stratify lymphoid malignancies by grade
    ● Recognize the existence of grey zone lymphomas
    ● This multiparameter approach has been validated in international studies as highly reproducible

WHO 2008 classification of tumors of hematopoietic and lymphoid tissues (T/NK)
=================================================================

Precursor T-lymphoid neoplasms
● T lymphoblastic leukemia/lymphoma, 9837/3

Mature T cell and NK cell neoplasms
● T cell prolymphocytic leukemia, 9834/3
● T cell large granular lymphocytic leukemia, 9831/3
● Chronic lymphoproliferative disorder of NK cells, 9831/3
● Aggressive NK cell leukemia, 9948/3
● Systemic EBV-positive T cell lymphoproliferative disease of childhood, 9724/3
● Hydroa vacciniforme-like lymphoma, 9725/3
● Adult T cell leukemia/lymphoma, 9827/3
● Extranodal NK/T cell lymphoma, nasal type, 9719/3
● Enteropathy-associated T cell lymphoma, 9717/3
● Hepatosplenic T cell lymphoma, 9716/3
● Subcutaneous panniculitis-like T cell lymphoma, 9708/3
● Mycosis fungoides, 9700/3
● Sézary syndrome, 9701/3
● Primary cutaneous CD30-positive T cell lymphoproliferative disorders
● Lymphomatoid papulosis, 9718/1
● Primary cutaneous anaplastic large cell lymphoma, 9718/3
● Primary cutaneous gamma-delta T cell lymphoma, 9726/3
● Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T cell lymphoma, 9709/3
● Primary cutaneous CD4-positive small/medium T cell lymphoma, 9709/3
● Peripheral T cell lymphoma, NOS, 9702/3
● Angioimmunoblastic T cell lymphoma, 9705/3
● Anaplastic large cell lymphoma, ALK-positive, 9714/3
● Anaplastic large cell lymphoma, ALK-negative, 9702/3

Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia Staging
Author: Sandy D Kotiah, MD; Chief Editor: Jules E Harris, MD
Medscape Sep 6, 2013
http://emedicine.medscape.com/article/2006578-overview

General considerations in the staging of chronic lymphocytic leukemia (CLL) and the revised Rai (United States) and Binet (Europe) staging systems for CLL are provided below.[1, 2, 3]

See Chronic Leukemias: 4 Cancers to Differentiate, a Critical Images slideshow, to help detect chronic leukemias and determine the specific type present.

General considerations

  • CLL and small lymphocytic lymphoma (SLL) are different manifestations of the same disease; SLL is diagnosed when the disease is mainly nodal, and CLL is diagnosed when the disease is seen in the blood and bone marrow
  • CLL is diagnosed by > 5000 monoclonal lymphocytes/mm3 for longer than 3mo; the bone marrow usually has more than 30% monoclonal lymphocytes and is either normocellular or hypercellular
  • Monoclonal B lymphocytosis is a precursor form of CLL that is defined by a monoclonal B cell lymphocytosis < 5000 monoclonal lymphocytes/mm3; all lymph nodes smaller than 1.5 cm; no anemia; and no thrombocytopenia

Revised Rai staging system (United States)

Low risk (formerly stage 0)[1] :

  • Lymphocytosis, lymphocytes in blood > 15000/mcL, and > 40% lymphocytes in the bone marrow

Intermediate risk (formerly stages I and II):

  • Lymphocytosis as in low risk with enlarged node(s) in any site, or splenomegaly or hepatomegaly or both

High risk (formerly stages III and IV):

  • Lymphocytosis as in low risk and intermediate risk with disease-related anemia (hemoglobin level < 11.0 g/dL or hematocrit < 33%) or platelets < 100,000/mcL

Binet staging system (Europe)

Stage A:

  • Hemoglobin ≥ 10 g/dL, platelets ≥ 100,000/mm3, and < 3 enlarged areas

Stage B:

  • Hemoglobin ≥ 10 g/dL, platelets ≥ 100,000/mm3, and ≥ 3 enlarged areas

Stage C:

  • Hemoglobin < 10 g/dL, platelets < 100,000/mm3, and any number of enlarged areas

Read Full Post »