Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Pharmaceutical Sciences’


Novel Macromolecular IV to Oral Delivery Conversion Pathway: Anti-thrombolytic post-surgical – Catalent OptiGel Bio™ Technology

Reporter: Aviva Lev-Ari, PhD, RN

Case Study

OptiGel BioTechnology Enables IV to Oral Therapy Conversion

Executive Summary

An early-stage biotechnology company had developed a novel macromolecular intravenous (IV) therapy for an anti-thrombolytic post-surgical indication. While the therapy had shown complete absorption via IV, the dose form was not ideal due to a number of factors including manufacturing costs, compliance, and ease of use, as well as as well as the long term treatment requirements. This case study demonstrates how Catalent OptiGel Bio™ technology can provide a pathway for an IV to oral delivery conversion, resulting in enhanced therapies for patients.

The Challenges

Though soluble, the macromolecule presented a number of permeability challenges, which hindered delivery of an active therapeutic dose across the lumen of the small intestine to achieve the desired therapeutic effect.

*Salamat-Miller N et al. , Pharmaceutical Research, 2005, 22(2):245-254

By incorporating OptiGel Bio™ technology and our formulation expertise, an optimized oral therapy was developed combining permeation enhancement and targeted delivery.

physiochemical properties High molecular weight (>2500 Da)Strong negative charge*

Rigid, inflexible geometry*

targeted delivery Functional API must be delivered to the small intestine in order to achieve bioavailability
permeability Mucus layer physical barrierRandom and limited transcellular pathways

“Fence and gate” function of tight junctions

pharmacokinetic profile Oral delivery must reach exposure within therapeutic range

The Catalent Solution

enhanced permeability The first challenge to overcome in development was enhancing the permeability of the macromolecule. A stepwise screening approach utilizing both in vitro and in vivo models yielded lead formulation candidates for further evaluation.

The Catalent Solution

https://kapost-files-prod.s3.amazonaws.com/uploads/direct/1382388405-22-3748/274-01_CaseStudy_OptiGelBio.pdf

enhanced permeability The first challenge to overcome in development was enhancing the permeability of the macromolecule. A stepwise screening approach utilizing both in vitro and in vivo models yielded lead formulation candidates for further evaluation.

Conclusion

Using OptiGel Bio™ technology, we overcame the challenges traditionally associated with the oral delivery of macromolecules and enabled conversion from an IV to a more efficient, more convenient and less invasive oral dose form while maintaining an effective pK profile. Through a multi-step drug delivery screening process and our OptiGel Bio™ technology, we can enable enhanced therapies—resulting in better treatments and more value for innovators, healthcare professionals and patients.

SOURCE

https://kapost-files-prod.s3.amazonaws.com/uploads/direct/1382388405-22-3748/274-01_CaseStudy_OptiGelBio.pdf

Advertisements

Read Full Post »


Cardio-Metabolic Drug Targets, Inaugural, September 25 – 26, 2013, Westin Waterfront | Boston, Massachusetts  

 

Reporter: Aviva Lev-Ari, PhD, RN

                                 

ABOUT THIS CONFERENCE

Cardiovascular disease, diabetes, obesity and dyslipidemia, though traditionally treated as separate entities, are often conditions that appear together in individuals because of defects in underlying metabolic processes. Researchers are therefore now seeking compounds that target biological points of intersection of these related diseases in the hopes of ‘killing more birds with one stone.’ Or they are approaching drug development of a compound for a specific disease with a greater awareness of the backdrop of related conditions.

Join fellow biomedical researchers from academia and industry at our day and a half conference, Cardio-Metabolic Drug Targets to discuss the impact of this paradigm change in the way drugs are discovered and developed in the cardio-metabolic arena and to stay abreast of the latest targets and drug development candidates in the pipeline.

SUGGESTED EVENT PACKAGE:

September 23: Allosteric Modulators of GPCRs Short Course 
September 24 – 25: Novel Strategies for Kinase Inhibitors Conference
September 25: Setting Up Effective Functional Screens Using 3D Cell Cultures Dinner Short Course
September 25 – 26: Cardio-Metabolic Drug Targets Conference

Scientific Advisory Board:

Jerome J. Schentag, Pharm.D., Professor of Pharmaceutical Sciences, University at Buffalo

Rebecca Taub, M.D., Ph.D., CEO, Madrigal Pharmaceuticals

Preliminary Agenda

BEYOND STATINS: NEW APPROACHES FOR REGULATING LIPID METABOLISM AND ATHEROSCLEROSIS

Macrophage ABC Transporters: Novel Targets to Promote Atherosclerotic Plaque Regression by Inducing Reverse Cholesterol Transport (RCT) Mechanism

Eralp “Al” Bellibas, M.D., Senior Director, Head, Clinical Pharmacology, The Medicines Company

Targeting PCSK9 for Hypercholesterolemia and Atherosclerosis

Hong Liang, Ph.D., Associate Research Fellow, Rinat Research Unit, Pfizer

Novel Treatment for Dyslipidemia: Liver-Directed Thyroid Hormone Receptor-ß Agonist

Rebecca Taub, M.D., Ph.D., CEO, Madrigal Pharmaceuticals

CARDIO-METABOLIC THERAPEUTIC CANDIDATES

Oral Mimetics of RYGB and GLP-1 in Metabolic Syndromes

Jerome J. Schentag, Pharm.D., Professor of Pharmaceutical Sciences, University at Buffalo

FGF21-Mimetic Antibodies for Type 2 Diabetes

Jun Sonoda, Ph.D., Group Leader, Scientist, Molecular Biology, Genentech

NEW CARDIO-METABOLIC TARGETS

Blockade of Delta-Like Ligand 4 (Dll4)-Notch Signaling Reduces Macrophage Activation and Attenuates Atherosclerotic Vascular Diseases and Metabolic Disorders

Masanori Aikawa, Ph.D., Assistant Professor, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical

Modulating Glycerolipid Metabolism in Myeloid Cells for Cardiometabolic Benefit

Suneil K. Koliwad, M.D., Ph.D., Assistant Professor, Diabetes Center/Department of Medicine, University of California San Francisco

AMPK as a Target in Lipid and Carbohydrate Metabolism

Ajit Srivastava, Ph.D., Adjunct Professor, Pharmacology, Drexel University; Independent Consultant, Integrated Pharma Solutions, LLC

 http://www.discoveryontarget.com/Cardio-Drug-Targets

Inaugural n September 25 – 26, 2013

Cardio-Metabolic Drug Targets

Targeting One, Treating More

»»Suggested Event Package

September 23: Allosteric Modulators of GPCRs Short Course 4

September 24-25: Novel Strategies for Kinase Inhibitors

Conference

September 25: Setting Up Effective Functional Screens Using 3D

Cell Cultures Dinner Short Course 9

September 25-26: Cardio-Metabolic Drug Targets Conference

Wednesday, September 25

11:50 am Registration

BEYOND STATINS: NEW APPRO ACHES FOR

REGULATING LIPID METABOLISM AND

ATHERO SCLERO SIS

1:30 pm Chairperson’s Opening Remarks

1:40 PLENARY KEYNOTE PRESENTATION: Towards a Patient-

Based Drug Discovery

Stuart L. Schreiber, Ph.D., Director, Chemical Biology and Founding Member, Broad

Institute of Harvard and MIT; Howard Hughes Medical Institute Investigator; Morris

Loeb Professor of Chemistry and Chemical Biology, Harvard University

3:10 Refreshment Break in the Exhibit Hall with Poster Viewing

4:00 FEATURED SPEAKER: Atherosclerosis and Cardio-

Metabolism Research Overview: Promising Targets

Margrit Schwarz, Ph.D., MBA, formerly Director of Research, Dyslipidemia and

Atherosclerosis, Amgen; currently President, MS Consulting, LLC

4:30 Sponsored Presentations (Opportunities Available)

5:00 Novel Treatment for Dyslipidemia: Liver-Directed Thyroid

Hormone Receptor-ß Agonist

Rebecca Taub, M.D., Ph.D., CEO, Madrigal Pharmaceuticals

5:30 Modulating Glycerolipid Metabolism in Myeloid Cells for

Cardiometabolic Benefit

Suneil K. Koliwad, MD., Ph.D. Assistant Professor, Diabetes Center/Department

of Medicine, University of California San Francisco (UCSF)

6:00 Targeting PCSK9 for Hypercholesterolemia and

Atherosclerosis

Hong Liang, Ph.D., Associate Research Fellow, Rinat Research Unit, Pfizer

6:30 Close of Day

Thursday, September 26

7:30 am Registration

NEW ARTHERO /LIPID/CARDIO-METABOLIC

DRUG TARGETS

8:00 Breakfast Interactive Breakout Discussion Groups

9:05 Chairperson’s Opening Remarks

9:10 ApoE derived ABCA1 agonists for the Treatment of

Cardiovascular Disease

Jan Johansson, M.D., Ph.D., CEO, Artery Therapeutics, Inc.

9:40 Blockade of Delta-Like Ligand 4 (Dll4)-Notch Signaling

Reduces Macrophage Activation and Attenuates Atherosclerotic

Vascular Diseases and Metabolic Disorders

Masanori Aikawa, Ph.D., Assistant Professor, Department of Medicine,

Brigham and Women’s Hospital and Harvard Medical

10:10 Coffee Break in the Exhibit Hall with Poster Viewing

10:55 AMPK as a Target in Lipid and Carbohydrate Metabolism

Ajit Srivastava, Ph.D., Adjunct Professor, Department of Pharmacology, Drexel

University; Independent Consultant, Integrated Pharma Solutions, LLC

11:25 Macrophage ABC Transporters: Novel Targets to Promote

Atherosclerotic Plaque Regression by Inducing Reverse

Cholesterol Transport (RCT) Mechanism

Eralp “Al” Bellibas, M.D., Senior Director, Head, Clinical Pharmacology, The

Medicines Company

11:55 Targeting Ubiquitin Signaling Mediated Disease Pathology

of LDL Receptors

Udo Maier, Ph.D., Head of Target Discovery Research, Boehringer Ingelheim

Pharma

12:25 pm Sponsored Presentation (Opportunity Available)

12:55 Luncheon Presentation (Sponsorship Opportunity Available) or

Lunch on Your Own

Cardio-Metab olic Mimetics

2:25 Chairperson’s Opening Remarks

2:30 Oral Mimetics of RYGB and GLP-1 in Metabolic Syndromes

Jerome J. Schentag, PharmD, Professor of Pharmaceutical Sciences, University

at Buffalo

3:00 FGF21-Mimetic Antibodies for Type 2 Diabetes

Jun Sonoda, Ph.D., Group Leader, Scientist, Molecular Biology, Genentech

3:30 Ice Cream Refreshment Break in the Exhibit Hall with Poster

Viewing

gpCrS IN METABOLIC DISEASES

4:00 Targeting the Ghrelin Receptor with an Oral, Macrocyclic

Agonist

Helmut Thomas, Ph.D., Senior Vice President, Research and Preclinical

Development, Tranzyme Pharma

4:30 Presentation to be Announced

5:00 Lactate Receptor, GPR81/HCA1, as a Novel Target for

Metabolic Disorders

Changlu Liu, Ph.D., Scientific Director, Janssen Fellow, Head of Molecular

Innovation, Neuroscience, Janssen Research & Development, LLC

5:30 Targeting GPR55 in Cancer and Diabetes

Marco Falasca, Ph.D., Professor of Molecular Pharmacology, Queen Mary

University of London

6:00 Close of Conference

Read Full Post »