Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
Paul G. Yock, Recipient of the 2024 National Medal of Technology and Innovation, Professor of Cardiovascular Medicine at Stanford Medical School
Curator: Aviva Lev-Ari, PhD, RN
NMTI Citation
Paul G. Yock, Stanford University
For innovations in interventional cardiology. Paul Yock’s visionary work understanding the human heart is applied around the world today to improve patient care and save countless lives. His creation of the Biodesign approach to training future leaders of biotechnology and health care ensures his insights and experience will benefit generations to come.
Recipients of the 2024 National Medal of Technology and Innovation, administered by President Joe Biden and Laureates of the National Medal of Science, administered by NSF
Paul Yock – The Martha Meier Weiland Professor in the School of Medicine and Professor of Bioengineering, Cardiovascular Medicine, and (by courtesy) of Mechanical Engineering
Scientific Leadership Council Member, Clark Center Faculty
Dr. Paul Yock is the Martha Meier Weiland Professor of Medicine and founding co-chair of Stanford’s Department of Bioengineering, with courtesy appointments in the Graduate School of Business and the Department of Mechanical Engineering. He is also founder and director of the Stanford Byers Center for Biodesign.
After completing his undergraduate and graduate studies at Amherst College and Oxford, respectively, Paul received his MD from Harvard Medical School followed by internship and residency training at the University of California, San Francisco and a fellowship in cardiology at Stanford. He began his faculty career as an interventional cardiologist at UCSF and then moved to Stanford in 1994.
Paul has authored over 300 peer-reviewed publications, chapters and editorials, two textbooks, and over 50 US patents. He is internationally known for his work in inventing, developing, and testing new devices, including the Rapid Exchange™ stenting and balloon angioplasty system, which is now the primary system in use worldwide. He also invented the fundamental approach to intravascular ultrasound imaging and founded Cardiovascular Imaging Systems (CVIS), later acquired by Boston Scientific. Recent awards include the Transcatheter Therapeutics (TCT) Career Achievement Award, the American College of Cardiology Distinguished Scientist Award, and the National Academy of Engineering’s 2018 Bernard M. Gordon Prize for Innovation in Engineering and Technology Education.
Bio
Yock began his faculty career as an interventional cardiologist at UC San Francisco and then moved to Stanford in 1994. Yock is known for his work in inventing, developing and testing new devices, including the
Rapid Exchange angioplasty and stenting system, which is the primary approach used worldwide. Yock also authored the fundamental patents for
intravascular ultrasound imaging, conducted the initial clinical trials and
established the Stanford Center for Research in Cardiovascular Interventions as a core laboratory for analysis of intravascular ultrasound clinical studies. He also
invented the Smart Needle and
is a co-inventor of the strain-reduction patch for wound healing.
Yock was founding Co-Chair of the Department of Bioengineering and continues research related to new device technologies.
Yock also was the founding director of the Stanford Byers Center for Biodesign – dedicated to advanced training in medical technology innovation.
Abstract: A catheter is provided for insertion in the he blood vessel of a patient for ultrasonically imaging the vessel wall. The catheter includes a tubular element and an internally housed drive cable for effective circumferential scan about the catheter of an ultrasonic generating means. Both the tubular element and the drive cable are of a size and flexibility sufficient to permit their introduction into the vessel and subsequent advancement through the vessel to the location of the vessel wall where imaging is desired.
Abstract: Devices and methods for obtaining a three-dimensional image of an internal body site are provided. The subject devices are elongated structures (e.g., catheters) having a plurality of ultrasonic transducers located at their distal end. The configuration of the plurality of ultrasonic transducers may be reversibly changed from a first to a second configuration, where the radial aperture of the plurality of ultrasonic transducers is greater in the second configuration than in the first configuration. A feature of certain embodiments of the subject invention is that the plurality of ultrasonic tranducers are configured in the second configuration as a substantially continuous set of transducers. In using the subject imaging devices, the distal end of the devices is positioned at the internal body site of interest while the plurality of ultrasonic transducers is in the first configuration.
Type: Application
Filed: November 10, 2004
Publication date: September 29, 2005
Inventors: Richard Popp, Ali Hassan, Christian Eversull, Jeremy Johnson, Paul Yock
Abstract: Apparatus for introduction into the vessel of a patient comprising a guiding catheter adapted to be inserted into the vessel of the patient and a device adapted to be inserted into the guiding catheter. The device includes a flexible elongate member and a sleeve carried by the flexible elongate member near the distal extremity thereof and extending from a region near the distal extremity to a region spaced from the distal extremity of the flexible elongate element. The device also includes a guide wire adapted to extend through the sleeve so that the guide wire extends rearwardly of the sleeve extending alongside of and exteriorally of the flexible elongate element into a region near the proximal extremity of the flexible elongate element.
Abstract: A catheter system for localized or semi-localized administration of agents through the wall of a blood vessel is provided. Various catheter system constructions which use at least one expandable occluding device to create an isolated region are provided. Constructions using one catheter and one occlusion device are provided, along with constructions using two catheters and multiple occlusion devices. The catheter system may include a catheter with a variable stiffness along its length. The catheter system may also include a guide wire integrated with an inner catheter. The catheter can infuse the agent into the blood vessel in a pressure regulated manner. Methods for delivery and infusion of the agent within a blood vessel are also provided.
Type: Application
Filed: February 20, 2004
Publication date: March 17, 2005
Inventors: Michi Garrison, Todd Brinton, Peter Campbell, Steve Roe, Stephen Salmon, Paul Yock
Abstract: Apparatus and method are described for introducing an imaging catheter to the coronary vasculature. A guiding catheter is introduced so that the distal end of the guiding catheter engages a coronary os. The distal end of the guiding catheter is shaped so that a mark on the distal end is oriented in a predetermined orientation relative to the coronary vasculature. An imaging catheter is then introduced through the guiding catheter and an image of the mark is produced with the imaging catheter while in the guiding catheter. In this manner, the relative orientation of the produced image and the coronary vasculature is known.
Type: Grant
Filed: October 20, 1997
Date of Patent: March 9, 1999
Assignee: Cardiovascular Imaging Systems, Inc.
Inventors: Paul Yock, Yue-Teh Jang, Stephen M. Salmon
Abstract: Apparatus and method are described for introducing an imaging catheter to the coronary vasculature. A guiding catheter is introduced so that the distal end of the guiding catheter engages a coronary os. The distal end of the guiding catheter is shaped so that a mark on the distal end is oriented in a predetermined orientation relative to the coronary vasculature. An imaging catheter is then introduced through the guiding catheter and an image of the mark is produced with the imaging catheter while in the guiding catheter. In this manner, the relative orientation of the produced image and the coronary vasculature is known.
Type: Grant
Filed: September 4, 1996
Date of Patent: March 10, 1998
Assignee: Cardiovascular Imaging Systems Inc.
Inventors: Paul Yock, Yue-Teh Jang, Stephen M. Salmon
Abstract: Apparatus and method are described for introducing an imaging catheter to the coronary vasculature. A guiding catheter is introduced so that the distal end of the guiding catheter engages a coronary os. The distal end of the guiding catheter is shaped so that a mark on the distal end is oriented in a predetermined orientation relative to the coronary vasculature. An imaging catheter is then introduced through the guiding catheter and an image of the mark is produced with the imaging catheter while in the guiding catheter. In this manner, the relative orientation of the produced image and the coronary vasculature is known.
Type: Grant
Filed: June 6, 1995
Date of Patent: January 28, 1997
Inventors: Paul Yock, Yue-Teh Jang, Stephen M. Salmon
W. Gerald “Jerry” Austen, MD influential in the design and creation of a cardiopulmonary (heart-lung) bypass machine and the intra-aortic balloon pump at MGH as renowned cardiac surgeon
Curator and reporter: Aviva Lev-Ari, PhD, RN
This article is classified in the ontology of LPBI Group’s Journal PharmaceuticalIntelligence.com under the Category of Research
Interviews with Scientific Leaders
This category includes 300 articles. LPBI Group’s will publish in July 2023 its Library of Audio Podcasts on “Interviews with Scientific Leaders.”
The presentations in the video below, about W. Gerald “Jerry” Austen, MD contributions to cardiac surgery are considered to be testimonials as well as qualify as “Interviews with a Scientific Leader” in the domains of cardiac surgery and cardiac repair medical devices with a special focus on:
cardiopulmonary (heart-lung) bypass machine, and
the intra-aortic balloon pump
On these two domains, LPBI Group had published extensively as the sources cited, below: Articles, e-Books in English and Spanish and Chapters in these book on the very specialty of Dr. Austen as included in the title of this article.
Recently, Mass General celebrated the life and legacy of W. Gerald “Jerry” Austen, MD — a renowned cardiac surgeon, beloved family man and visionary leader.
SOURCE
In Memoriam: W. Gerald Austen, MD – Mass General Giving
For 70 years, Dr. Austen was part of the Mass General community, having completed his residency at the hospital and continuing to become one of the most distinguished and well-regarded physicians in the hospital’s more than 200-year history. At 39 years old, he was named Mass General’s chief of surgical services — a position he held for nearly 29 years. Under his leadership, the Department of Surgery became one of the greatest academic departments of surgery in the country. Among his many contributions, he was influential in the design and creation of a cardiopulmonary (heart-lung) bypass machine and the intra-aortic balloon pump.
Hundreds of Dr. Austen’s closest friends, colleagues and family members gathered at Boston Symphony Hall to commemorate his legacy. A variety of speakers — from current Mass General President David F. M. Brown, MD, to former hospital President Peter Slavin, MD, and retired Chairman, President and CEO of Abiomed Mike Minogue — shared fond memories of Dr. Austen, further illustrating his unmatched and lasting impact on others.
The Mass General community will continue to mourn the loss of such a giant in the medical world and will carry on Dr. Austen’s legacy through compassionate care and an unparalleled commitment to all patients.
Susan Hockfield, ex-President of MIT delivered a speech about mechanical engineering and biomedicine, medical devices and cardiac repair devices. How proud Dr. Austen was about his MIT education and functions he fulfilled for this institutions and others.
Other related contributions on the specialty of Dr.W. Gerald “Jerry” Austen, MD – cardiac surgery are covered in e-books and articles on this Open Access Online Scientific Journal, include the following:
Articles
319 articles in the Cardiac and Cardiovascular Surgical Procedures Category
98 articles in the Aortic Valve Category
Among patients with aortic stenosis who were at intermediate surgical risk, there was no significant difference in the incidence of death or disabling stroke at 5 years after TAVR as compared with surgical aortic-valve replacement
Chapter 13: Valve Replacement, Valve Implantation and Valve Repair
13.2 Aortic Valve
13.2.1 New method for performing Aortic Valve Replacement: Transmural catheter procedure developed at NIH, Minimally-invasive tissue-crossing – Transcaval access, abdominal aorta and the inferior vena cava
13.2.4 Surgical Aortic Valve Replacement (SAVR) vs Transcatheter Aortic Valve Implantation (TAVI): Results Comparison for Prosthesis-Patient Mismatch (PPM) – adjusted outcomes, including mortality, heart failure (HF) rehospitalization, stroke, and quality of life, at 1 year
13.2.6 Off-Label TAVR Procedures: 1 in 10 associated with higher in-hospital 30-day mortality, 1-year mortality was similar in the Off-Label and the On-Label groups
13.2.11 One year Post-Intervention Mortality Rate: TAVR and AVR – Aortic Valve Procedures 6.7% in AVR, 11.0% in AVR with CABG, 20.7 in Transvascular (TV-TAVR) and 28.0% in Transapical (TA-TAVR) Patients
13.2.16 The Centers for Medicare & Medicaid Services (CMS) covers transcatheter aortic valve replacement (TAVR) under Coverage with Evidence Development (CED)
Chapter 7: Ventricular Failure: Assist Devices, Surgical and Non-Surgical
7.1 Trends in the Industry
The Voice of Series A Content Consultant: Justin D. Pearlman, MD, PhD, FACC
In addition to minimally invasive treatments for coronary disease and valve disease, there are minimally invasive alternatives to heart transplant for the dangerously weak heart (extreme heart failure) which can otherwise result in Cardiogenic Shock. These involve various means to augment or complement the pumping function of the heart, such as a Ventricular Assist Device (VAD) .
With respect to the performance of Mitral Valve Replacement, the current practice favors bioprosthetic valves over mechanical valve replacement for most patients, initially just used for elderly to avoid need for coumadin, but now used at younger ages due to improvements in longevity of the bioprosthetic valves, plus less damage to red cells.
7.1.2 Percutaneous Endocardial Ablation of Scar-Related Ventricular Tachycardia
7.2.4 Experimental Therapy (Left inter-atrial shunt implant device) for Heart Failure: Expert Opinion on a Preliminary Study on Heart Failure with preserved Ejection Fraction
7.3.1 Dilated Cardiomyopathy: Decisions on implantable cardioverter-defibrillators (ICDs) using left ventricular ejection fraction (LVEF) and Midwall Fibrosis: Decisions on Replacement using late gadolinium enhancement cardiovascular MR (LGE-CMR)
Chapter 11: Comparison of Coronary Artery Bypass Graft (CABG) and Percutaneous Coronary Intervention (PCI) / Coronary Angioplasty
11.1 Hybrid Cath Lab/OR Suite
The Voice of Series A Content Consultant: Justin D. Pearlman, MD, PhD, FACC
In an uncommon reversal of opinion, the combined forces of the American Heart Association (AHA) and the American College of Cardiology (ACC) reviewed compelling data and reversed a prior assessment on the need for an on-site cardiovascular surgery support for sites offering interventional cardiac catheterization. The data show that sites offering the intervention without a surgeon achieve better results that sites that ship patients out for the interventions, and that the risk without on-site thoracic surgery backup is negligible.
AHA, ACC Change in requirement for surgical support: Class IIb -> Class IIa Level of Evidence A: Supports Nonemergent PCI without Surgical Backup (Change of class IIb, level of Evidence B).
Larry H Bernstein, MD, FCAP and Justin D Pearlman, MD, PhD, FACC
11.1.2 Coronary Reperfusion Therapies: CABG vs PCI – Mayo Clinic preprocedure Risk Score (MCRS) for Prediction of in-Hospital Mortality after CABG or PCI
Author and Curator: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN
11.1.6 Patients with Heart Failure & Left Ventricular Dysfunction: Life Expectancy Increased by coronary artery bypass graft (CABG) surgery: Medical Therapy alone and had Poor Outcomes
11.2.8 CABG: a Superior Revascularization Modality to PCI in Patients with poor LVF, Multivessel disease and Diabetes, Similar Risk of Stroke between 31 days and 5 years, post intervention
Mitralign and Corvia, Tewksbury, Mass – Investment and Acquisition by Edwards Lifesciences
Reporter: Aviva Lev-Ari, PhD, RN
Edwards Lifesciences (NYSE:EW) said today that it made a pair of strategic bets on the structural heart space, paying $35 million for the right to acquire Corvia Medical and paying an unspecified amount for some of mitral valve repair device maker Mitralign‘s assets.
Tewksbury, Mass.-based Corvia is developing an interatrial shunt to treat heart failure by creating a small opening between the left and right atria to lower blood pressure in the left atrium and lungs. The device has CE Mark approval in the European Union and a pivotal U.S trial aimed at winning a nod from the FDA is under way, Edwards said.
“We are extremely pleased to have the support of the global leader in patient-focused innovations for structural heart disease as we continue to advance this novel treatment for heart failure,” Corvia president & CEO George Fazio said in prepared remarks. “We are proud of our accomplishments to date and look forward to completing the pivotal study with the support of our global clinical investigators.”
The Irvine, Calif.-based company also said it bought “certain” Mitralign assets, including intellectual property and associated clinical and regulatory experience. Mitralign, also based in Tewksbury, is developing an annuloplasty system for treating functional mitral and tricuspid regurgitation.
Edwards said the transactions are not expected to affect its financial outlook for 2019.
Surgical Aortic Valve Replacement (SAVR) vs Transcatheter Aortic Valve Implantation (TAVI): Results Comparison for Prosthesis-Patient Mismatch (PPM) – adjusted outcomes, including mortality, heart failure (HF) rehospitalization, stroke, and quality of life, at 1 year
Reporter: Aviva Lev-Ari, PhD, RN
UPDATED on 4/13/2023
TAVR vs. SAVR in patients with pure aortic regurgitation: Key insights from a new Cleveland Clinic study
Overall, TAVR and SAVR patients were linked to comparable in-hospital mortality, 30-day mortality and 30-day stroke rates. After a median follow-up period of 31 months, however, TAVR patients were associated with a higher mortality rate and higher risk of redo aortic valve replacement.
“The poorer intermediate-term outcomes with TAVR in our study could potentially be due to residual unmeasured differences and surgical risk between the two groups, but could also be related to the anatomical differences between pure severe AR and aortic stenosis,” the authors wrote. “The increased prevalence of bicuspid leaflets and annular/aortic root dilation in AR patients, with relatively less leaflet and annular calcification, pose a challenge with transcatheter heart valve anchoring and adequate positioning and increase the risk of paravalvular leak and device embolization. Abnormal hemodynamics across prosthetic valves and paravalvular leakage, whether mild or moderate/severe, are known predictors of poor outcomes, including death. The recommendation to oversize the THV during implantation is also associated with increased risk of aortic rupture and conversion to open heart surgery, a complication that was observed in 1% of TAVR patients in our study.”
5-Year Outcomes of Self-Expanding Transcatheter Versus Surgical Aortic Valve Replacement in High-Risk Patients
Thomas G. Gleason, Michael J. Reardon, Jeffrey J. Popma, G. Michael Deeb, Steven J. Yakubov, Joon S. Lee, Neal S. Kleiman, Stan Chetcuti, James B. Hermiller Jr., John Heiser, William Merhi, George L. Zorn III, Peter Tadros, Newell Robinson, George Petrossian, G. Chad Hughes, J. Kevin Harrison, John V. Conte, Mubashir Mumtaz, Jae K. Oh, Jian Huang, David H. Adams and for the CoreValve U.S. Pivotal High Risk Trial Clinical Investigators
Abstract
Background The CoreValve U.S. Pivotal High Risk Trial was the first randomized trial to show superior 1-year mortality of transcatheter aortic valve replacement (TAVR) compared with surgical aortic valve replacement (SAVR) among high operative mortality–risk patients.
Objectives The authors sought to compare TAVR to SAVR for mid-term 5-year outcomes of safety, performance, and durability.
Methods Surgical high-risk patients were randomized (1:1) to TAVR with the self-expanding bioprosthesis or SAVR. VARC-1 (Valve Academic Research Consortium I) definitions were applied. Severe hemodynamic structural valve deterioration was defined as a mean gradient ≥40 mm Hg or a change in gradient ≥20 mm Hg or new severe aortic regurgitation. Five-year follow-up was planned.
Results A total of 797 patients were randomized at 45 U.S. centers, of whom 750 underwent an attempted implant (TAVR = 391, SAVR = 359). The overall mean age was 83 years, and the STS score was 7.4%. All-cause mortality rates at 5 years were 55.3% for TAVR and 55.4% for SAVR. Subgroup analysis showed no differences in mortality. Major stroke rates were 12.3% for TAVR and 13.2% for SAVR. Mean aortic valve gradients were 7.1 ± 3.6 mm Hg for TAVR and 10.9 ± 5.7 mm Hg for SAVR. No clinically significant valve thrombosis was observed. Freedom from severe SVD was 99.2% for TAVR and 98.3% for SAVR (p = 0.32), and freedom from valve reintervention was 97.0% for TAVR and 98.9% for SAVR (p = 0.04). A permanent pacemaker was implanted in 33.0% of TAVR and 19.8% of SAVR patients at 5 years.
Conclusions This study shows similar mid-term survival and stroke rates in high-risk patients following TAVR or SAVR. Severe structural valve deterioration and valve reinterventions were uncommon. (Safety and Efficacy Study of the Medtronic CoreValve® System in the Treatment of Symptomatic Severe Aortic Stenosis in High Risk and Very High Risk Subjects Who Need Aortic Valve Replacement; NCT01240902)
Prosthesis-patient mismatch (PPM) after surgical aortic valve replacement (AVR) for aortic stenosis is generally associated with worse outcomes. Transcatheter AVR (TAVR) can achieve a larger valve orifice and the effects of PPM after TAVR are less well studied.
OBJECTIVES:
The authors utilized the Society of Thoracic Surgeons/American College of Cardiology TVT (Transcatheter Valve Therapy) registry to examine the frequency, predictors, and association with outcomes of PPM after TAVR in 62,125 patients enrolled between 2014 and 2017.
METHODS:
On the basis of the discharge echocardiographic effective valve area indexed to body surface area, PPM was classified as severe (<0.65 cm2/m2), moderate (0.65 to 0.85 cm2/m2), or none (>0.85 cm2/m2). Multivariable regression models were utilized to examine predictors of severe PPM as well as adjusted outcomes, including mortality, heart failure (HF) rehospitalization, stroke, and quality of life, at 1 year in 37,470 Medicare patients with claims linkage.
RESULTS:
Severe and moderate PPM were present following TAVR in 12% and 25% of patients, respectively. Predictors of severe PPM included small (≤23-mm diameter) valve prosthesis, valve-in-valve procedure, larger body surface area, female sex, younger age, non-white/Hispanic race, lower ejection fraction, atrial fibrillation, and severe mitral or tricuspid regurgitation.
At 1 year, mortality was 17.2%, 15.6%, and 15.9% in severe, moderate, and no PPM patients, respectively (p = 0.02).
HF rehospitalization had occurred in 14.7%, 12.8%, and 11.9% of patients with severe, moderate, and no PPM, respectively (p < 0.0001).
There was no association of severe PPM with stroke or quality of life score at 1 year.
CONCLUSIONS:
Severe PPM after TAVR was present in 12% of patients and was associated with higher mortality and HF rehospitalization at 1 year. Further investigation is warranted into the prevention of severe PPM in patients undergoing TAVR.
We reviewed currently available studies that investigated prosthesis-patient mismatch (PPM) in transcatheter aortic valve implantation (TAVI) with a systematic literature search and meta-analytic estimates.
METHODS:
To identify all studies that investigated PPM in TAVI, MEDLINE and EMBASE were searched through August 2015. Studies considered for inclusion met the following criteria: the study population included patients undergoing TAVI and outcomes included at least post-procedural PPM prevalence. We performed three quantitative meta-analyses about (1) PPM prevalence after TAVI, (2) PPM prevalence after TAVI versus surgical aortic valve replacement (SAVR), and (3) late all-cause mortality after TAVI in patients with PPM versus patients without PPM.
RESULTS:
We identified 21 eligible studies that included data on a total of 4,000 patients undergoing TAVI. The first meta-analyses found moderate PPM prevalence of 26.7%, severe PPM prevalence of 8.0%, and overall PPM prevalence of 35.1%. The second meta-analyses of six studies, including 745 patients, found statistically significant reductions in moderate (p = 0.03), severe (p = 0.0003), and overall (p = 0.02) PPM prevalence after TAVI relative to SAVR. The third meta-analyses of five studies, including 2,654 patients, found no statistically significant differences in late mortality between patients with severe PPM and patients without PPM (p = 0.44) and between patients with overall PPM and patients without PPM (p = 0.97).
CONCLUSIONS:
Overall, moderate, and severe PPM prevalence after TAVI was 35%, 27%, and 8%, respectively, which may be less than that after SAVR. In contrast to PPM after SAVR, PPM after TAVI may not impair late survival.
Other related studies published on TAVR, TAVI in this Open Access Online Scientific Journal include the following:
New method for performing Aortic Valve Replacement: Transmural catheter procedure developed at NIH, Minimally-invasive tissue-crossing – Transcaval access, abdominal aorta and the inferior vena cava
One year Post-Intervention Mortality Rate: TAVR and AVR – Aortic Valve Procedures 6.7% in AVR, 11.0% in AVR with CABG, 20.7 in Transvascular (TV-TAVR) and 28.0% in Transapical (TA-TAVR) Patients
Off-Label TAVR Procedures: 1 in 10 associated with higher in-hospital 30-day mortality, 1-year mortality was similar in the Off-Label and the On-Label groups
First case in the US: Valve-in-Valve (Aortic and Mitral) Replacements with Transapical Transcatheter Implants – The Use of Transfemoral Devices
Writer: Larry H Bernstein, MD, FCAP
and
Curator: Aviva Lev-Ari, PhD, RN
UPDATED on 9/24/2018
TCT: Long-Term Data Reassuring for Valve-in-Valve TAVR
New valve performs well through 3 years
by Nicole Lou, Contributing Writer, MedPage Today
Transcatheter valve-in-valve replacement had lasting benefits in a high-risk patient population requiring valve reintervention, registry data showed.
Starting with 365 patients who got valve-in-valve transcatheter aortic valve replacement (TAVR), death took its toll in 12.1%, 22.2%, and 32.7% by 12, 24, and 36 months, respectively. Stroke and repeat valve replacement had plateaued to 5.1% and 0.6% over 24 months, rising to 6.2% and 1.9% at the 36-month mark.
Valve performance was sustained the whole time, as effective orifice area had a significant boost from baseline to discharge, staying stable thereafter out to 3 years; mean gradient dropped after the procedure and similarly stayed unchanged over time, according to John Webb, MD, of St. Paul’s Hospital in Vancouver, at the Transcatheter Cardiovascular Therapeutics (TCT) conference.
Among survivors, early improvements in functional status were also maintained over the 3-year period, Webb said. Most patients started off in New York Heart Association class 3 and 4 and were reclassified as class 1 and 2 after TAVR. Quality of life also was better, as shown in improved Kansas City Cardiomyopathy Questionnaire overall summary scores: 43.1 at baseline to 70.8 at 30 days (P<0.0001), and staying stable out to 3 years.
The results were not influenced by surgical valve size, failure mode, approach, or residual gradient.
These data are “certainly reassuring out 2-3 years” but the concern lies in anticipation of lower-risk and younger patients who are expected to start getting TAVR in the future, commented Stephan Windecker, MD, of the University of Bern in Switzerland, who was a panelist at the TCT late-breaker trial session.
There are some concerns regarding coronary obstruction, Webb acknowledged. “This is true in surgical valves and it would be every bit as true in transcatheter valves, if not more so.”
The following is a report of the first case in the US of both aortic and mitral valve transcatheter replacements using transfemoral devices via the transapical approach.
It is part of a series on the cardiovascular team at the Columbia Univarsity Medical Center/New York Presbyterian Hospital and the Cardiovascular Research Foundation in the Partner trial.
Concomitant Transcatheter Aortic and Mitral Valve-in-Valve Replacements Using Transfemoral Devices Via the Transapical Approach
Paradis J-M, Kodali SK, Hahn RT, George I, Daneault B, et al.
ColumbiaUniversityMedicalCenter/NewYork-Presbyterian Hospital, New York, NY fJACC:CARDIOVASCULARINTERVENTIONS 2013;6(1):94-96 http://dx.doi.org/10.1016/j.jcin.2012.07.018
Case Presentation
This is an 85 year old man with congestive heart failure (CHF) NYHA class III/IV and hemolytic anemia. He had a previous history of S. viridans bacterial endocarditis that caused severe aortic and mitral regurgitations. Both aortic and mitral valves were replaced in 2002. A recenttTransesophageal echocardiogram (TEE) showed the left ventricular ejection fraction (LVEF) was 55%. This was related to severe mitral regurgitation caused by a flail leaflet, and its internal diameters measured 21-23.8 mm. There was, in addition, severe stenosis of the Carpentir-Edwards valve in the aortic position with an aortic valve area (AVA) of only 0.9 cm, which was 24 mm internal diameter measured by 3-D TEE.
Action Taken
The patient was felt to require reoperative aortic and mitral valve replacements, but he was deemed inoperable by 2 cardiothoracic surgeons. Therefore they decided to proceed with transapical transcatheter double valve-in-valve implantation using 2 commercially available RetroFlex 3 transfemoral devices (Edwards Lifesciences, Irvine, CA). A 26-mm Edwards SAPIEN transcatheter heart valve (THV) was placed within the Carpentier-Edwards valve in the aortic position without pre-dilatation under rapid ventricular pacing. An Edwards SAPIEN 26-mm THV was then deployed within the Hancock modified bioprosthesis in the mitral position with a 2-step inflation technique. TEE after deplonment of both valves showed excellent function. The new aortic prosthetic valve had an AVA of 2.08 cm, peak and mean gradients of 12 and 6 mm Hg, respectively, and no aortic insufficiency. The mitral valve area was 1.65 cm, and there was only trace mitral regurgitation.
Figure 1.TEE Showing the Mitral Bioprosthetic Valve
Transesophageal echocardiogram (TEE) demonstrating (A) color Doppler through the mitral bioprosthetic valve. Severe intraprosthetic mitral regurgitation caused by a flail leaflet generates an eccentric regurgitant jet (see Online Video1).The effective regurgitant orifice was calculated to be 0.42cm. (B) Measurements of the internal dimensions of the mitral bioprosthesis using 3-dimensional reconstruction imaging.
Figure 2.TEE Showing the Aortic Bioprosthetic Valve.
Transesophageal echocardiogram (TEE) showing (A) planimetry of the orifice and (B) measurement of the internal diameter of the aortic bioprosthesis.
Final fluoroscopic images showing the 4 prosthetic heart valves (Hancock modified,Carpentier-Edwards, and 2 Edwards SAPIEN transcatheter heart valves) in different angulations
Clinical Trials Results for Endothelin System: Pathophysiological role in Chronic Heart Failure, Acute Coronary Syndromes and MI – Marker of Disease Severity or Genetic Determination?
Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems
Justin Pearlman MD ME PhD MA FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN