Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘National Academy of Sciences’


Curator: Aviva Lev-Ari, PhD, RN

First post published on 4/30/2012

We went pretty far:

On 4/30/2013 – Great News to Share

News from the National Academy of Sciences

Date: April 30, 2013

FOR IMMEDIATE RELEASE

National Academy of Sciences Members and Foreign Associates Elected

The National Academy of Sciences announced today the election of 84 new members and 21 foreign associates from 14 countries in recognition of their distinguished and continuing achievements in original research.

Those elected today bring the total number of active members to 2,179 and the total number of foreign associates to 437. Foreign associates are nonvoting members of the Academy, with citizenship outside the United States.

Newly elected members and their affiliations at the time of election are:

We congratulate OUR BOARD MEMBER for being elected 

Feldman, Marcus W.

Director, Morrison Institute for Population and Resource Studies, and Burnet C. and Mildred Finley Wohlford Professor of Biological Sciences, department of biological sciences, Stanford University, Stanford, Calif.

http://www.nasonline.org/news-and-multimedia/news/2013_04_30_NAS_Election.html

Our Site Statistics Shines:

Discussions

URL

Clicks

ncbi.nlm.nih.gov 1,121
nature.com 587
genomeweb.com 220
sciencedirect.com 192
medicregister.com 179
pnas.org 150
nejm.org 137

Contributing Authors:

All Time

Author Views
2012pharmaceutical – Aviva Lev-Ari 56,648
larryhbern 22,368
Dr. Sudipta Saha 8,638
tildabarliya 8,146
ritusaxena 6,272
Dror Nir 4,726
sjwilliamspa 4,371
aviralvatsa 3,481
anamikasarkar 1,776
pkandala 1,637
Alan F. Kaul, PharmD., MS, MBA, FCCP 1,101
megbaker58 858
zraviv06 618
zs22 506
Aashir Awan, Phd 461
Demet Sag, Ph.D., CRA, GCP 347
howarddonohue 309
jdpmdphd 193
Ed Kislauskis 171
anayou1 144
jukkakarjalainen 139
Dr.Sreedhar Tirunagari 99
S. Chakrabarti, Ph.D. 65
apreconasia 57

OUR BioMed e-BOOKS Series

Forthcoming on e-Book List of Amazon-KINDLE

Larry Bernstein, MD FCAP and Aviral Vatsa, MBBS, PhD, Editors

Target Market: CARDIOLOGISTS

Justin D. Pearlman MD ME PhD MA FACC, Editor (9/2013)

Target Market: CARDIOLOGISTS


Larry Bernstein, MD FACP, Sr. Editor, SJ Williams, PhD and Aviva Lev-Ari, PhD, RN, Editors  
(7/2013)

Target Market: Life Scientists and BIG PARMA, Academia and the Public

Larry Bernstein, MD, FCAP & Ritu Saxena, PhD, Editors


Target Market: GI MDs, Nutritionists, Food Industry, Academia and the Public


SJ. Williams, PhD, Sr. Editor,  Tilda Barliya, PhD and Ritu Saxena, PhD, Editors


Target Market: ONCOLOGISTS

Dr. Tilda Barliya, Editor


Target Market: BIG PHARMA & Academics

– Editor TBA

– Editor TBA

List of ADDITIONAL TITLES for 2014 e-Books

– Editor TBA

– Editor TBA

– Editor TBA

Advertisements

Read Full Post »


Ribozymes and RNA Machines –  Work of Jennifer A. Doudna

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED 3/27/2014

New DNA-editing technology spawns bold UC initiative

http://newscenter.berkeley.edu/2014/03/18/new-dna-editing-technology-spawns-bold-uc-initiative/

Crispr Goes Global

http://vcresearch.berkeley.edu/news/profile/doudna_jennifer

UPDATED 3/5/2014

Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity

http://www.cell.com/retrieve/pii/S0092867413010155

One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering

http://www.cell.com/retrieve/pii/S0092867413004674

RNA-Guided Human Genome Engineering via Cas9

http://www.sciencemag.org/content/suppl/2013/01/03/science.1232033.DC1

SOURCE

From: Expert CRISPR/Cas9 Publications <Expert_CRISPRCas9_Publications@mail.vresp.com>
Date: Tue, 04 Mar 2014 17:03:01 +0000
To: <avivalev-ari@alum.berkeley.edu>
Subject: CRISPR-mediated gene editing resources

 

UPDATED on 11/10/2013

Exclusive: ‘Jaw-dropping’ breakthrough hailed as landmark in fight against hereditary diseases as Crispr technique heralds genetic revolution

Development to revolutionise study and treatment of a range of diseases from cancer, incurable viruses such as HIV to inherited genetic disorders such as sickle-cell anaemia and Huntington’s disease

SCIENCE EDITOR

Thursday 07 November 2013

A breakthrough in genetics – described as “jaw-dropping” by one Nobel scientist – has created intense excitement among DNA experts around the world who believe the discovery will transform their ability to edit the genomes of all living organisms, including humans.

Click image above to enlarge graphic

The development has been hailed as a milestone in medical science because it promises to revolutionise the study and treatment of a range of diseases, from cancer and incurable viruses to inherited genetic disorders such as sickle-cell anaemia and Down syndrome.

For the first time, scientists are able to engineer any part of the human genome with extreme precision using a revolutionary new technique called Crispr, which has been likened to editing the individual letters on any chosen page of an encyclopedia without creating spelling mistakes. The landmark development means it is now possible to make the most accurate and detailed alterations to any specific position on the DNA of the 23 pairs of human chromosomes without introducing unintended mutations or flaws, scientists said.

The technique is so accurate that scientists believe it will soon be used in gene-therapy trials on humans to treat incurable viruses such as HIV or currently untreatable genetic disorders such as Huntington’s disease. It might also be used controversially to correct gene defects in human IVF embryos, scientists said.

Until now, gene therapy has had largely to rely on highly inaccurate methods of editing the genome, often involving modified viruses that insert DNA at random into the genome – considered too risky for many patients.

The new method, however, transforms genetic engineering because it is simple and easy to edit any desired part of the DNA molecule, right down to the individual chemical building-blocks or nucleotides that make up the genetic alphabet, researchers said.

“Crispr is absolutely huge. It’s incredibly powerful and it has many applications, from agriculture to potential gene therapy in humans,” said Craig Mello of the University of Massachusetts Medical School, who shared the 2006 Nobel Prize for medicine for a previous genetic discovery called RNA interference.

“This is really a triumph of basic science and in many ways it’s better than RNA interference. It’s a tremendous breakthrough with huge implications for molecular genetics. It’s a real game-changer,” Professor Mello told The Independent.

“It’s one of those things that you have to see to believe. I read the scientific papers like everyone else but when I saw it working in my own lab, my jaw dropped. A total novice in my lab got it to work,” Professor Mello said.

In addition to engineering the genes of plants and animals, which could accelerate the development of GM crops and livestock, the Crispr technique dramatically “lowers the threshold” for carrying out “germline” gene therapy on human IVF embryos, Professor Mello added.

The new method of gene therapy makes it simple and easy to edit any desired part of the DNA molecule (Getty Creative)

The new method of gene therapy makes it simple and easy to edit any desired part of the DNA molecule (Getty Creative) Germline gene therapy on sperm, eggs or embryos to eliminate inherited diseases alters the DNA of all subsequent generations, but fears over its safety, and the prospect of so-called “designer babies”, has led to it being made illegal in Britain and many other countries.

The new gene-editing technique could address many of the safety concerns because it is so accurate. Some scientists now believe it is only a matter of time before IVF doctors suggest that it could be used to eliminate genetic diseases from affected families by changing an embryo’s DNA before implanting it into the womb.

“If this new technique succeeds in allowing perfectly targeted correction of abnormal genes, eliminating safety concerns, then the exciting prospect is that treatments could be developed and applied to the germline, ridding families and all their descendants of devastating inherited disorders,” said Dagan Wells, an IVF scientist at Oxford University.

“It would be difficult to argue against using it if it can be shown to be as safe, reliable and effective as it appears to be. Who would condemn a child to terrible suffering and perhaps an early death when a therapy exists, capable of repairing the problem?” Dr Wells said.

The Crispr process was first identified as a natural immune defence used by bacteria against invading viruses. Last year, however, scientists led by Jennifer Doudna at the University of California, Berkeley, published a seminal study showing that Crispr can be used to target any region of a genome with extreme precision with the aid of a DNA-cutting enzyme called CAS9.

Since then, several teams of scientists showed that the Crispr-CAS9 system used by Professor Doudna could be adapted to work on a range of life forms, from plants and nematode worms to fruit flies and laboratory mice.

Earlier this year, several teams of scientists demonstrated that it can also be used accurately to engineer the DNA of mouse embryos and even human stem cells grown in culture. Geneticists were astounded by how easy, accurate and effective it is at altering the genetic code of any life form – and they immediately realised the therapeutic potential for medicine.

“The efficiency and ease of use is completely unprecedented. I’m jumping out of my skin with excitement,” said George Church, a geneticist at Harvard University who led one of the teams that used Crispr to edit the human genome for the first time.

“The new technology should permit alterations of serious genetic disorders. This could be done, in principle, at any stage of development from sperm and egg cells and IVF embryos up to the irreversible stages of the disease,” Professor Church said.

David Adams, a DNA scientist at the Wellcome Trust Sanger Institute in Cambridge, said that the technique has the potential to transform the way scientists are able to manipulate the genes of all living organisms, especially patients with inherited diseases, cancer or lifelong HIV infection.

“This is the first time we’ve been able to edit the genome efficiently and precisely and at a scale that means individual patient mutations can be corrected,” Dr Adams said.

“There have been other technologies for editing the genome but they all leave a ‘scar’ behind or foreign DNA in the genome. This leaves no scars behind and you can change the individual nucleotides of DNA – the ‘letters’ of the genetic textbook – without any other unwanted changes,” he said.

Timeline: Landmarks in DNA science

Restriction enzymes: allowed scientists to cut the DNA molecule at or near a recognised genetic sequence. The enzymes work well in microbes but are more difficult to target in the more complex genomes of plants and animals. Their discovery in the 1970s opened the way for the age of genetic engineering, from GM crops to GM animals, and led to the 1978 Nobel Prize for medicine.

Polymerase chain reaction (PCR): a technique developed in 1983 by Kary Mullis (below, credit: Getty) in California allowed scientists to amplify the smallest amounts of DNA – down to a single molecule – to virtually unlimited quantities. It quickly became a standard technique, especially in forensic science, where it is used routinely in analysing the smallest tissue samples left at crime scenes. Many historical crimes have since been solved with the help of the PCR test. Mullis won the Nobel Prize for chemistry in 1993.

RNA interference: scientists working on the changing colour of petunia plants first noticed this phenomenon, which was later shown to involve RNA, a molecular cousin to DNA. In 1998, Craig Mello and Andrew Fire in the US demonstrated the phenomenon on nematode worms, showing that small strands of RNA could be used to turn down the activity of genes, rather like a dimmer switch. They shared the 2006 Nobel Prize for physiology or medicine for the discovery.

Zinc fingers: complex proteins called zinc fingers, first used on mice in 1994, can cut DNA at selected sites in the genome, with the help of enzymes. Another DNA-cutting technique called Talens can do something similar. But both are cumbersome to use and difficult to operate in practice – unlike the Crispr technique.

VIEW VIDEO

http://www.independent.co.uk/news/science/indyplus-video-crispr-technique-8925604.html

a video of how the Crispr system derived from bacteria works on human cells to correct genetic defects

SOURCE

http://www.independent.co.uk/news/science/exclusive-jawdropping-breakthrough-hailed-as-landmark-in-fight-against-hereditary-diseases-as-crispr-technique-heralds-genetic-revolution-8925295.html?goback=%2Egde_2106240_member_5804987154979381248#%21

Jennifer A. Doudna

Professor of Chemistry
Professor of Biochemistry & Molecular Biology

email: doudna@berkeley.edu
office: 708A Stanley Hall
phone: 510-643-0225
fax: 510-643-0008

lab: 731 Stanley Hall
lab phone: 510-643-0113
lab fax: 510-643-0080

Research Group URL
Recent Publications

Research Interests

Chemical Biology

Ribozymes and RNA Machines: RNA forms a variety of complex globular structures, some of which function like enzymes or form functional complexes with proteins. There are three major areas of focus in the lab: catalytic RNA, the function of RNA in the signal recognition particle and the mechanism of RNA-mediated internal initiation of protein synthesis. We are interested in understanding and comparing catalytic strategies used by RNA to those of protein enzymes, focusing on self-splicing introns and the self-cleaving RNA from hepatitis delta virus (HDV), a human pathogen. We are also investigating RNA-mediated initiation of protein synthesis, focusing on the internal ribosome entry site (IRES) RNA from Hepatitis C virus. Cryo-EM, x-ray crystallography and biochemical experiments are focused on understanding the structure and mechanism of the IRES and its amazing ability to hijack the mammalian ribosome and associated translation factors. A third area of focus in the lab is the signal recognition particle, which contains a highly conserved RNA required for targeting proteins for export out of cells. Each of these projects seeks to understand the molecular basis for RNA function, using a combination of structural, biophysical and biochemical approaches.

Biography

Medical School, 1989-1991; Post-doctoral fellow, University of Colorado, 1991-1994; Assistant/Associate professor, (1994-1998), Professor, (1999-2001), Yale University. Professor of Biochemistry & Molecular Biology, UC Berkeley, (2002-). Howard Hughes Medical Investigator 1997 to present. Packard Foundation Fellow Award, 1996; NSF Alan T. Waterman Award, 2000. Member, National Academy of Sciences, 2002. Member, American Academy of Arts and Sciences, 2003; American Association for the Advancement of Science Fellow Award, 2008; Member, Institute of Medicine of the National Academies, 2010.

READ MORE

Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

https://pharmaceuticalintelligence.com/2013/03/28/diagnosing-diseases-gene-therapy-precision-genome-editing-and-cost-effective-microrna-profiling/

Read Full Post »


Reporter: Aviva Lev-Ari, RN

With New Microfludic Technique, MIT Team Aims to ‘Squeeze’ siRNAs into Cells

January 31, 2013

Researchers from the Massachusetts Institute of Technology last week reported on the development of a new microfluidic-based approach to delivering macromolecules, including functional siRNAs, into cells without the need for a vector.

According to the investigators, who published their findings in the Proceedings of the National Academy of Sciences, the technique involves compressing cells by passing them through a constriction, which opens up temporary holes in their membranes that permit the diffusion of materials in surrounding buffer to enter the cytosol.

“By providing flexibility in application and obviating the need for exogenous materials or electrical fields, this method could potentially enable new avenues of disease research and treatment,” they wrote.

Although intracellular delivery of macromolecules is a key step in therapeutic and research applications, the cellular membrane is largely impermeable to such compounds, according to the PNAS paper. Existing methods to overcome this hurdle, which has proven to be a major stumbling block for RNAi drugs, typically involve the use of polymeric nanoparticles, liposomes, or chemical modifications of the target molecules to facilitate membrane poration or endocytotic delivery.

When it comes to nucleic acids, which are relatively structurally uniform, these approaches can be efficient. Still, the “endosome escape mechanism that most of these methods rely on is often inefficient; hence, much material remains trapped in endosomal and lysosomal vesicles,” the MIT team pointed out. “More effective gene delivery methods, such as viral vectors, however, often risk chromosomal integration.

Meantime, electroporation has proven effective, even in difficult to transfect primary cells, but has limited applicability and can cause cell death. Microinjection, too, has certain advantages in settings such as the creation of transgenic organisms, but its low throughput hamstrings many therapeutic and research applications, the researchers noted.

To overcome the limitations of existing delivery techniques, the MIT group had initially been attempting to “shoot” molecules of interest into cells, Armon Sharei, an MIT graduate student in chemical engineering and lead author of the PNAS paper, told Gene Silencing News.

“That system had its own challenges, and through the course of that work, we stumbled upon this effect where if you squeeze the cells rapidly enough, it will temporarily disrupt their membrane,” he said.

More specifically, the researchers found that the “rapid mechanical deformation of a cell, as it passes through a constriction with a minimum dimension smaller than the cell diameter, results in the formation of transient membrane disruptions or holes,” they wrote in PNAS. “The size and frequency of these holes would be a function of the shear and compressive forces experienced by the cell during its passage through the constriction. Material from the surrounding medium may then diffuse directly into the cell cytosol throughout the life span of these holes.”

To test this idea, the researchers constructed devices, each consisting of 45 identical, parallel microfluidic channels containing one or more constrictions, etched onto a silicon chip and sealed in glass. The width of each constriction ranged from 4 to 8 micrometers, and the lengths ranged from 10 to 40 micrometers.

“Before use, the device is first connected to a steel interface that connects the inlet and outlet reservoirs to the silicon device,” the researchers wrote. “A mixture of cells and the desired delivery material is then placed into the inlet reservoir and Teflon tubing is attached at the inlet. A pressure regulator is then used to adjust the pressure at the inlet reservoir and drive the cells through the device. Treated cells are collected from the outlet reservoir.”

The system was tested with a variety of molecules, including carbon nanotubes and proteins, as well as siRNAs targeting GFP. According to Sharei, when the siRNAs were delivered into GFP-expressing HeLa cells using the microfluidic platform, the investigators were able to achieve 80 to 90 percent target knockdown.

He noted that the knockdown effects weren’t as robust as with Lipofectamine 2000, but “we were still encouraged because something like Lipofectamine is known to be toxic and therefore inapplicable for humans.” Notably, the microfluidic device and operating parameters were not optimized for siRNAs, further limiting its ability to compete with the transfection reagent in these studies.

“The other good thing was that we seem to work just as well for primary cells, whereas existing methods like Lipofectamine don’t translate well once you start moving out of the standard cell models you have in the lab,” he added.

The MIT team also successfully delivered 3 kilodalton dextran molecules — which are approximately the same size as a standard siRNA molecule and a “pretty accurate” surrogate for the gene-silencing molecules — into newborn human foreskin fibroblasts, primary murine dendritic cells, and embryonic stem cells, suggesting that the method could be used with siRNAs into a variety of cell types, Sharei said.

Buoyed by the positive data, he and his colleagues are now further testing the platform with siRNAs against “easy readout genes” in primary cells including immune cells and stem cells, he said. “Once we establish that, we’d try to go for an application where there’s an siRNA that’s going to knock down something functional.

“I can’t say exactly what we’ve been up to because it’s not published, but it has been going pretty well,” he added.

Ultimately, the MIT group aims to develop the microfluidic platform not only for research applications, where it could be “incorporated into a larger integrated system consisting of multiple pre-treatment and post-treatment modules” that could take advantage of its average throughput rate of 20,000 cells a second, but also therapeutic ones, too.

A number of investigational stem cell-based therapies, for instance, involve the ex vivo manipulation of the cells, Sharei said. The delivery platform could theoretically be used to “enhance or facilitate that manipulation.”

“Such an approach would take advantage of the potentially increased delivery efficiency of therapeutic macro- molecules and could be safer than existing techniques because it would obviate the need for potentially toxic vector particles and would mitigate any potential side effects associated with reticuloendothelial clearance and off-target delivery,” the study authors wrote in PNAS.

Doug Macron is the editor of GenomeWeb’s Gene Silencing News. He covers research and therapeutic applications of RNAi, miRNA, and other gene-silencing technologies. E-mail Doug Macron or follow his GenomeWeb Twitter account at@Genesilencing.

 

Read Full Post »