Feeds:
Posts
Comments

Posts Tagged ‘Texas Medical Center’


Texas Heart Institute: 50 Years of Accomplishments

Reporter: Aviva Lev-Ari, PhD, RN

 

Texas Heart Institute’s Overachieving President and Medical Director Dr. James T Willerson Profiles THI’s 50 Years Of Accomplishments


Posted Thursday , April 25,2013

The Texas Heart Institute is a not-for-profit cardiology and heart surgery center located at the Texas Medical Center in Houston. Founded in 1962 by Dr. Denton A. Cooley, the mission of the Texas Heart Institute has been to reduce the devastating toll of cardiovascular disease through innovative programs in research, education and improved patient care. Over the past 51 years the Institute has been involved in training cardiologists, heart surgeons, imaging specialists in cardiovascular medicine and cardiac electrophysiology, and pathologists, and educated hundreds of cardiovascular specialists.

texasheart

A nonprofit organization in the truest sense, and unlike most institutions that have a source of operating revenue, the Texas Heart Institute relies solely on government grants, research contracts and, above all, philanthropy, with donations from grateful patients, foundations, corporations, physicians, and the general public account for more than half of the Institute’s annual operating budget. The Institute’s location in and affiliations with St. Luke’s Episcopal Hospital and Texas Children’s Hospital have assured that all age groups will be treated, and has freed the Institute of the burden of financing a health care facility.

The Texas Heart Institute (THI) and its clinical partner, St. Luke’s Episcopal Hospital, have become one of America’s largest cardiovascular centers, whose 160-member professional staff have reportedly performed more than 100,000 open heart operations, 200,000 cardiac catheterizations, and 1,000 heart transplants.

In its 2010 annual survey of “America’s Best Hospitals,” U.S. News & World Report ranked the Texas Heart Institute at St. Luke’s Episcopal Hospital number four in the United States for heart care, marking this its 20th consecutive year of inclusion as one of the top 10 heart centers in the country.

willersonIn an interview with the European science news journal Research Media, THI President and Medical Director, Dr. James T Willerson, says that when he originally came to the Institute in 2004, then still President Dr Cooley wanted him to be Medical Director of Cardiovascular Research, and upon Dr. Cooley’s resignation in 2008, he asked Dr. Willerston to succeed him in that position.

In the interview, Dr. Willerston, a native Texan, profiles the THI’s achievements and shares his thoughts on reducing the heavy burdens of Cardiovascular disease, which is estimated to cost the economy $449 billion annually.

Accounting for over a quarter of all deaths in the U.S. each year, cardiovascular disease is obviously a major health concern, but mortality from coronary heart disease (CHD) has substantially decreased in recent decades. Dr. Willerston attributes the decrease to research discoveries that have provided insights into mechanisms responsible for thrombosis in injured coronary and cerebral arteries, and led to improved treatment.

He cites as an example that increased understanding of ‘bad’ low-density lipoprotein (LDL) cholesterol in patients to values well below 100 mg/dl has been a very important contribution, as has the development of statins to lower LDL has also been crucial, the use of low-dose aspirin and other medications to control blood pressure, avoidance of smoking and use of recreational drugs, control of blood sugar in patients who are diabetic, emphasis on diet and exercise, and improved imaging techniques for blood vessels and the cardiovascular system, as factors that have played a role in protecting CHD patients and decreasing mortality risk.

However, he notes that the greatest GHD risk factor is a genetic one, and a remaining priority must be to identify genes that contribute to this risk; ultimately silencing the most dangerous ones using microRNA methodology. Dr. Willerston says numerous clinical studies in patients with cardiovascular disease using a variety of stem cell types, including mesenchymal stem cells taken from the bone marrow or adipose tissue have been conducted, and that through the pioneering work of Dr Doris Taylor, scientists are now able to deplete human hearts of their cellular structure and then restore that same heart to normal function by the infusion of stem cells. With continued success, these efforts could fill a great unmet need and pave the way to a new area of transplant medicine.

Dr. Willerston maintains that prevention would be the single most effective means of reducing healthcare costs, and should be the main concern initiated at very young ages and continue throughout adulthood.

Dr. James T. Willerson, born in Lampasas, Texas, is President of The University of Texas Health Science Center at Houston where he is the Alkek-Williams Distinguished Professor and holds the Edward Randall III Chair in Internal Medicine. In October 2004, Dr. Willerson was named President-Elect of the Texas Heart Institute in Houston, Texas. He holds the Dunn Chair in Cardiology Research and the John O’Quinn Chair named the “James T. Willerson Distinguished Chair in Cardiovascular Research,” both at the Texas Heart Institute, Houston, Texas. From 1989 through 2000, he was the Chairman of the Department of Internal Medicine at The University of Texas Medical School at Houston where an Annual Lectureship has been established in his name. During this same period, he served as the Chief of Medical Services at Memorial Hermann Hospital. He is also the Medical Director, Director of Cardiovascular Research, and Co-Director of the Cullen Cardiovascular Research Laboratories at the Texas Heart Institute. He is an Adjunct Professor of Medicine at Baylor College of Medicine and at The University of Texas M.D. Anderson Cancer Center in Houston.

Dr. Willerson also founded TexGen Research, a collaboration which brings together all of the institutions in the Texas Medical Center to collect blood samples necessary for the discovery of those genes and proteins that play a key role in causing major diseases. With TexGen, each Texas Medical Center institution obtains blood samples from patients who have a personal or family history of cardiovascular disease, stroke, dementia, or selected cancers and who are admitted to their hospitals. Great progress is being made by this collaborative biomedical research effort.

A graduate of the Texas Military Institute in San Antonio, Texas, where he was the Battalion Commander, President of the Senior Class, Editor of the school newspaper, and a state swimming champion, Dr. Willerston attended The University of Texas at Austin, graduating as a Phi Beta Kappa, member of the Texas Cowboys, and where he lettered for three years in varsity swimming. Upon graduating as a member of Alpha Omega Alpha from Baylor College of Medicine in Houston, Texas, he completed his medical and cardiology training as an intern, resident, and research and clinical fellow at the Massachusetts General Hospital in Boston, Massachusetts, and as a Clinical Associate at the National Institutes of Health in Bethesda, Maryland.

He is the former Chairman of the National American Heart Association Research Committee and of the Cardiovascular and Renal Study Section of the National Institutes of Health. He has received the Award of Merit from the American Heart Association and has served as a member of the Board of Directors and Steering Committee of the National American Heart Association. Before coming to The University of Texas Medical School at Houston, Dr. Willerson was Professor of Medicine and Director of the Cardiology Division at The University of Texas Southwestern Medical School in Dallas, Texas, and Director and Principal Investigator of the National Heart, Lung, and Blood Institute’s Specialized Center of Research under a major grant from the NIH. Upon his departure, the “James T. Willerson, M.D. Distinguished Chair in Cardiovascular Diseases” was established at The University of Texas Southwestern Medical School.

Dr. Willerson has served as visiting professor and invited lecturer at more than 220 institutions worldwide, and has received numerous national and international awards, as well as having served on editorial boards for many professional publications including: The New England Journal of Medicine, Journal of Clinical Investigation, Circulation, Circulation Research, Arteriosclerosis and Thrombosis, American Journal of Medicine, Journal of the American College of Cardiology, American Journal of Cardiology, American Heart Journal, and Cardiovascular Medicine. From 1993 to 2004, he was the longest-serving Editor of Circulation, the major publication of the American Heart Association. In 1998, the monthly journal was converted to a weekly publication and attained the highest Impact Factor of any cardiology journal in the world. He has edited or co-edited twenty-four textbooks, including the Third Edition of Cardiovascular Medicine which was released in February of 2007. Additionally, he has published more than 850 scientific articles.

Dr. Willerson has been elected to membership in numerous professional societies, including the American Society of Clinical Investigation, the Association of American Physicians, the Association of Professors of Medicine, and the Institute of Medicine of the National Academy of Sciences. He was named a Distinguished Alumnus by the Baylor College of Medicine in 1998 and a Distinguished Alumnus of The University of Texas at Austin in 1999.

SOURCE:

http://bionews-tx.com/news/2013/04/25/texas-heart-institutes-overachieving-president-and-medical-director-dr-james-t-willerson-profiles-this-50-years-of-accomplishments/

Comment of Note

Dr. Lev-Ari, was a visitor at Texas Heart Institute, Perfusion Program, and shadowed Open Heart Surgery in 8/2005.

The museum on the First floor of the building represents a Historical exhibit of Images of Cardiac Procedures. On display is a complete array of surgical tools used in Cardiac Repair during the last 50 years of unprecedented development in Cardiac Medical Devices and Procedures. A duplicate of the exhibit is available at the Smithsonian Museum at WashDC.

Read Full Post »


Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 11/15/2013

Relax, PCSK9ers: FDA won’t roadblock blockbusters from Sanofi, Amgen

By Damian Garde

On the heels of new guidelines casting doubts on a much-hyped new class of cholesterol drugs, the FDA said it would not demand long and costly outcomes trials before approving PCSK9 treatments from the likes of Amgen ($AMGN), Sanofi ($SNY) and Regeneron ($REGN), clearing the way for treatments expected to rake in up to $3 billion a year.

As Bloomberg reports, the FDA plans to stick to its guns in vetting cardiovascular drugs, looking at reductions in LDL cholesterol and blood pressure as surrogate endpoints for long-term health benefits. That’s a relief for the developers of PCSK9-targeting drugs, who have faced mounting uncertainty about what they’ll need to do to get their would-be blockbusters to market. Partners Sanofi and Regeneron lead the pack with the promising alirocumab, followed by Amgen, Pfizer ($PFE) and numerous others.

Earlier this week, the American College of Cardiology and the American Heart Association put out new guidelines for prescribing cholesterol treatments, recommending tried-and-true statins over more novel therapies because the old drugs’ down-the-line cardiovascular benefits are well-told. That stirred up long-running concerns that the FDA would toughen up its requirements for the coming crop of PCSK9 treatments, asking drug developers to dump millions into long-term studies that demonstrate hard outcomes

But while PCSK9 developers may not have to worry about new regulatory hurdles, what’s good enough for the FDA won’t necessarily sway payers, and the billion-dollar sales estimates tied to PCSK9 drugs are contingent on widespread adoption. With that in mind, Pfizer is plotting a massive, 22,000-patient outcomes trial, looking to demonstrate the PCSK9-targeting RN-316’s ability to improve cardiovascular health in the long run, a move that may spur its competitors to follow suit.

And the FDA’s conventional wisdom on cardiovascular endpoints may not stand pat. Eric Colman, a deputy director at CDER, told Bloomberg the agency is keeping a close eye on a post-market study of Merck’s ($MRK) Vytorin, and if the drug’s LDL-lowering ability doesn’t translate to lower rates of cardiovascular events, it may well rethink its requirements.

Related Articles:

AstraZeneca wins, Merck and AbbVie lose with new statin-use guidelines

Sanofi, Regeneron take the lead in blockbuster PhIII race of PCSK9 drugs

Pfizer bets big on PCSK9 with ‘massive’ Phase III outcomes study

 SOURCE

From: FierceBiotech <editors@fiercebiotech.com>
Reply-To: <editors@fiercebiotech.com>
Date: Fri, 15 Nov 2013 17:56:42 +0000 (GMT)
To: <avivalev-ari@alum.berkeley.edu>
Subject: | 11.15.13 | Sanofi, Amgen dodge PCSK9 hurdles

 

http://www.nature.com/news/genetics-a-gene-of-rare-effect-1.12773?goback=%2Egde_96118_member_230797138

Genetics: A Gene of Rare Effect

A mutation that gives people rock-bottom cholesterol levels has led geneticists to what could be the next blockbuster heart drug.

Stephen S. Hall

09 April 2013
ADAPTED FROM: PETER DAZELEY/GETTY

Indeed, Tracy’s well-being has been inspiring to doctors, geneticists and now pharmaceutical companies precisely because she is so normal. Using every tool in the modern diagnostic arsenal — from brain scans and kidney sonograms to 24-hour blood-pressure monitors and cognitive tests — researchers at the Texas medical centre have diagnostically sliced and diced Tracy to make sure that the two highly unusual genetic mutations she has carried for her entire life have produced nothing more startling than an incredibly low level of cholesterol in her blood. At a time when the target for low-density lipoprotein (LDL) cholesterol, more commonly called ‘bad cholesterol’, in Americans’ blood is less than 100 milligrams per decilitre (a level many people fail to achieve), Tracy’s level is just 14.

A compact woman with wide-eyed energy, Tracy (not her real name) is one of a handful of African Americans whose genetics have enabled scientists to uncover one of the most promising compounds for controlling cholesterol since the first statin drug was approved by the US Food and Drug Administration in 1987. Seven years ago, researchers Helen Hobbs and Jonathan Cohen at UT-Southwestern reported1 that Tracy had inherited two mutations, one from her father and the other from her mother, in a gene called PCSK9, effectively eliminating a protein in the blood that has a fundamental role in controlling the levels of LDL cholesterol. African Americans with similar mutations have a nearly 90% reduced risk of heart disease. “She’s our girl, our main girl,” says Barbara Gilbert, a nurse who has drawn some 8,000 blood samples as part of Cohen and Hobbs’ project to find genes important to cholesterol metabolism.

Of all the intriguing DNA sequences spat out by the Human Genome Project and its ancillary studies, perhaps none is a more promising candidate to have a rapid, large-scale impact on human health than PCSK9. Elias Zerhouni, former director of the US National Institutes of Health (NIH) in Bethesda, Maryland, calls PCSK9 an “iconic example” of translational medicine in the genomics era. Preliminary clinical trials have already shown that drugs that inhibit the PCSK9 protein — used with or without statins — produce dramatic reductions in LDL cholesterol (more than 70% in some patients). Half-a-dozen pharmaceutical companies — all aiming for a share of the global market for cholesterol-reducing drugs that could reach US$25 billion in the next five years according to some estimates — are racing to the market with drugs that mimic the effect of Tracy’s paired mutations.

Free interview

Stephen Hall talks about Sharlayne’s unusual condition and whether similar cases might lead to a new line of drugs.

Zerhouni, now an in-house champion of this class of drug as an executive at drug firm Sanofi, headquartered in Paris, calls the discovery and development of PCSK9 a “beautiful story” in which researchers combined detailed physical information about patients with shrewd genetics to identify a medically important gene that has made “super-fast” progress to the clinic. “Once you have it, boy, everything just lines up,” he says. And although the end of the PCSK9 story has yet to be written — the advanced clinical trials now under way could still be derailed by unexpected side effects — it holds a valuable lesson for genomic research. The key discovery about PCSK9‘s medical potential was made by researchers working not only apart from the prevailing scientific strategy of genome research over the past decade, but with an almost entirely different approach.

As for Tracy, who lives in the southern part of Dallas County, the implications of her special genetic status have become clear. “I really didn’t understand at first,” she admits. “But now I’m watching ads on TV [for cholesterol-lowering drugs], and it’s like, ‘Wow, I don’t have that problem’.”

A heart problem

Cardiovascular disease is — and will be for the foreseeable future, according to the World Health Organization — the leading cause of death in the world, and its development is intimately linked to elevated levels of cholesterol in the blood. Since their introduction, statin drugs have been widely used to lower cholesterol levels. But Jan Breslow, a physician and geneticist at Rockefeller University in New York, points out that up to 20% of patients cannot tolerate statins’ side effects, which include muscle pain and even forgetfulness. And in many others, the drugs simply don’t control cholesterol levels well enough.

The search for better treatments for heart disease gained fresh impetus after scientists published the draft sequence of the human genome in 2001. In an effort to identify the genetic basis of common ailments such as heart disease and diabetes, geneticists settled on a strategy based on the ‘common variant hypothesis’. The idea was that a handful of disease-related versions (or variants) of genes for each disease would be common enough — at a frequency of roughly 5% or so — to be detected by powerful analyses of the whole genome. Massive surveys known as genome-wide association studies compared the genomes of thousands of people with heart disease, for example, with those of healthy controls. By 2009, however, many scientists were lamenting the fact that although the strategy had identified many common variants, each made only a small contribution to the disease. The results for cardiovascular disease have been “pretty disappointing”, says Daniel Steinberg, a lipoprotein expert at the University of California, San Diego.

Single-minded: Helen Hobbs and Jonathan Cohen’s approach to heart-disease genetics yielded a target for drugs that could compete with statins.MISTY KEASLER/REDUX/EYEVINE

More than a decade earlier, in Texas, Hobbs and Cohen had taken the opposite tack. They had backgrounds in Mendelian, or single-gene, disorders, in which an extremely rare variant can have a big — often fatal — effect. They also knew that people with a particular Mendelian disorder didn’t share a single common mutation in the affected gene, but rather had a lot of different, rare mutations. They hypothesized that in complex disorders, many different rare variants were also likely to have a big effect, whereas common variants would have relatively minor effects (otherwise natural selection would have weeded them out). “Jonathan and I did not see any reason why it couldn’t be that rare variants cumulatively contribute to disease,” Hobbs says. To find these rare variants, the pair needed to compile detailed physiological profiles, or phenotypes, of a large general population. Cohen spoke of the need to “Mendelize” people — to compartmentalize them by physiological traits, such as extremely high or low cholesterol levels, and then look in the extreme groups for variations in candidate genes known to be related to the trait.

The pair make a scientific odd couple. Hobbs, who trained as an MD, is gregarious, voluble and driven. Cohen, a soft-spoken geneticist from South Africa, has a laid-back, droll manner and a knack for quantitative thinking. In 1999, they set out to design a population-based study that focused on physical measurements related to heart disease. Organized with Ronald Victor, an expert on high blood pressure also at UT Southwestern, and funded by the Donald W. Reynolds Foundation in Las Vegas, Nevada, the Dallas Heart Study assembled exquisitely detailed physiological profiles on a population of roughly 3,500 Dallas residents2. Crucially, around half of the participants in the study were African Americans, because the researchers wanted to probe racial differences in heart disease and high blood pressure. The team measured blood pressure, body mass index, heart physiology and body-fat distribution, along with a battery of blood factors related to cholesterol metabolism — triglycerides, high-density lipoprotein (HDL) cholesterol and LDL cholesterol. In the samples of blood, of course, they also had DNA from each and every participant.

As soon as the database was completed in 2002, Hobbs and Cohen tested their rare-variant theory by looking at levels of HDL cholesterol. They identified the people with the highest (95th percentile) and lowest (5th percentile) levels, and then sequenced the DNA of three genes known to be key to metabolism of HDL cholesterol. What they found, both in Dallas and in an independent population of Canadians, was that the number of mutations was five times higher in the low HDL group than in the high group3. This made sense, Cohen says, because most human mutations interfere with the function of genes, which would lead to the low HDL numbers. Published in 2004, the results confirmed that rare, medically important mutations could be found in a population subdivided into extreme phenotypes.

Armed with their extensive database of cardiovascular traits, Hobbs and Cohen could now dive back into the Dallas Heart Study whenever they had a new hypothesis about heart disease and, as Cohen put it, “interrogate the DNA”. It wasn’t long before they had an especially intriguing piece of DNA at which to look.

The missing link

In February 2003, Nabil Seidah, a biochemist at the Clinical Research Institute of Montreal in Canada, and his colleagues reported the discovery of an enigmatic protein4. Seidah had been working on a class of enzymes known collectively as proprotein convertases, and the researchers had identified what looked like a new member of the family, called NARC-1: neural apoptosis-regulated convertase 1.

“We didn’t know what it was doing, of course,” Seidah says. But the group established that the gene coding the enzyme showed activity in the liver, kidney and intestines as well as in the developing brain. The team also knew that in humans the gene mapped to a precise genetic neighbourhood on the short arm of chromosome 1.

That last bit of geographical information pointed Seidah to a group led by Catherine Boileau at the Necker Hospital in Paris. Her team had been following families with a genetic form of extremely high levels of LDL cholesterol known as familial hypercholesterolaemia, which leads to severe coronary artery disease and, often, premature death. Group member Marianne Abifadel had spent five fruitless years searching a region on the short arm of chromosome 1 for a gene linked to the condition. When Seidah contacted Boileau and told her that he thought NARC-1 might be the gene she was looking for, she told him, “You’re crazy”, Seidah recalls. Seidah bet her a bottle of champagne that he was correct; within two weeks, Boileau called back, saying: “I owe you three bottles.”

“The PCSK9 story is a terrific example of an up-and-coming pattern of translational research.”

In 2003, the Paris and Montreal groups reported that the French families with hypercholesterolaemia had one of two mutations in this newly discovered gene, and speculated that this might cause increased production of the enzyme5. Despite Seidah’s protests, the journal editors gave both the gene and its protein product a new name that fit with standard nomenclature: proprotein convertase subtilisin/kexin type 9, or PCSK9. At around the same time, Kara Maxwell in Breslow’s group at Rockefeller University6 and Jay Horton, a gastroenterologist at UT-Southwestern7 also independently identified the PCSK9 gene in mice and revealed its role in a previously unknown pathway regulating cholesterol8.

The dramatic phenotype of the French families told Hobbs that “this is an important gene”. She also realized that in genetics, mutations that knock out a function are much more common than ones that amplify function, as seemed to be the case with the French families. “So immediately I’m thinking, a loss-of-function mutation should manifest as a low LDL level,” she says. “Let’s go and see if that’s true.”

Going to extremes

Hobbs and Cohen had no further to look than in the extreme margins of people in the Dallas Heart Study. In quick order, they identified the highest and lowest LDL readings in four groups: black women, black men, white women and white men. They then resequenced the PCSK9 gene in the low-cholesterol groups, looking for mutations that changed the make-up of the protein.

They found seven African Americans with one of two distinct ‘nonsense’ mutations in PCSK9 — mutations that essentially aborted production of the protein. Then they went back and looked for the same mutations in the entire population. Just 2% of all black people in the Dallas study had either of the two PCSK9 mutations — and those mutations were each associated with a 40% reduction of LDL cholesterol in the blood9. (The team later detected a ‘missense mutation’ in 3% of white people, which impaired but did not entirely block production of the protein.) The frequency of the mutations was so low, Hobbs says, that they would never have shown up in a search for common variants.

When Hobbs and Cohen published their findings in 2005, they suggested that PCSK9 played a crucial part in regulating bad cholesterol, but said nothing about whether the mutations had any effect on heart disease. That evidence came later that year, when they teamed up with Eric Boerwinkle, a geneticist at the University of Texas Health Science Center in Houston, to look forPCSK9 mutations in the Atherosclerosis Risk in Communities (ARIC) study, a large prospective study of heart disease that had been running since 1987. To experts such as Steinberg, the results10 — published in early 2006 — were “mind-blowing”. African Americans in ARIC who had mutations in PCSK9 had 28% less LDL cholesterol and an 88% lower risk of developing heart disease than people without the mutations. White people with the less severe mutation in the gene had a 15% reduction in LDL and a 47% reduced risk of heart disease.

How did the gene exert such profound effects on LDL cholesterol levels? As researchers went on to determine11, the PCSK9 protein normally circulates in the bloodstream and binds to the LDL receptor, a protein on the surface of liver cells that captures LDL cholesterol and removes it from the blood. After binding with the receptor, PCSK9 escorts it into the interior of the cell, where it is eventually degraded. When there is a lot of PCSK9 (as in the French families), there are fewer LDL receptors remaining to trap and remove bad cholesterol from the blood. When there is little or no PCSK9 (as in the black people with mutations), there are more free LDL receptors, which in turn remove more LDL cholesterol.

“We didn’t understand why everybody wasn’t doing what we were doing.”

The UT-Southwestern group, meanwhile, went back into the community looking for family members who might carry additional PCSK9 mutations. In September 2004, Gilbert, the nurse known as ‘the cholesterol lady’ in south Dallas because of her frequent visits, knocked on the door of Sharlayne Tracy’s mother, an original member of the Dallas Heart Study. Gilbert tested Tracy, as well as her sister, brother and father. “They tested all of us, and I was the lowest,” Tracy says. Zahid Ahmad, a doctor working with Hobbs at UT-Southwestern, was one of the first to look at Tracy’s lab results. “Dr Zahid was in awe,” Tracy recalled. “He said, ‘You’re not supposed to be so healthy!’.”

It wasn’t just that her LDL cholesterol measured 14. As a person with two dysfunctional copies of the gene — including a new type of mutation — Tracy was effectively a human version of a knockout mouse. The gene had been functionally erased from her genome, and PCSK9 was undetectable in her blood without any obvious untoward effects. The genomics community might have been a little slow to understand the significance, Hobbs says, “but the pharmaceutical companies got it right away”.

The next statin?

This being biology, however, the road to the clinic was not completely smooth. The particular biology of PCSK9 has so far thwarted efforts to find a small molecule that would interrupt its interaction with the LDL receptor and that could be packaged in a pill. But the fact that the molecule operates outside cells means that it is vulnerable to attack by monoclonal antibodies — one of the most successful (albeit most expensive) forms of biological medicine.

The results of early clinical trials have caused a stir. Regeneron Pharmaceuticals of Tarrytown, New York, collaborating with Sanofi, published phase II clinical-trial results12 last October showing that patients with high LDL cholesterol levels who had injections every two weeks of an anti-PCSK9 monoclonal antibody paired with a high-dose statin saw their LDL cholesterol levels fall by 73%; by comparison, patients taking high-dose statins alone had a decrease of just 17%. Last November, Regeneron and Sanofi began to recruit 18,000 patients for phase III trials that will test the ability of their therapy to cut cardiovascular events, including heart attacks and stroke. Amgen of Thousand Oaks, California, has also launched several phase III trials of its own monoclonal antibody after it reported similarly promising results13. Among other companies working on PCSK9-based therapies are Pfizer headquartered in New York, Roche based in Basel, Switzerland, and Alnylam Pharmaceuticals of Cambridge, Massachusetts. (Hobbs previously consulted for Regeneron and Pfizer, and now sits on the corporate board of Pfizer.)

Not everyone is convinced that a huge market awaits this class of cholesterol-lowering drugs. Tony Butler, a financial analyst at Barclays Capital in New York, acknowledges the “beautiful biology” of the PCSK9 story, but wonders if the expense of monoclonal drugs — and a natural reluctance of both patients and doctors to use injectable medicines — will constrain potential sales. “I have no idea what the size of the market may be,” he says.

“Everything hinges on the phase III side effects,” says Steinberg. So far, the main side effects reported have been minor, such as reactions at the injection site, diarrhoea and headaches. But animal experiments have raised potential red flags: the Montreal lab reported in 2006 that knocking out the gene in zebrafish is lethal to embryos14. That is why the case of Tracy was “very, very helpful” to drug companies, says Hobbs. Although her twin mutations have essentially deprived her of PCSK9 throughout her life, doctors have found nothing abnormal about her.

That last point may revive a debate in the cardiology community: should drug therapy to lower cholesterol levels, including statins and the anti-PCSK9 medicines, if they pan out, be started much earlier in patients than their 40s or 50s? That was the message Steinberg took from the people withPCSK9 mutations in the ARIC study — once he got over his shock at the remarkable health effects. “My first reaction was, ‘This must be wrong. How could that be?’And then it hit me — these people had low LDL from the day they were born, and that makes all the difference.” Steinberg argues that cardiologists “should get off our bums” and reach a consensus about beginning people on cholesterol-lowering therapy in their early thirties. But Breslow, a former president of the American Heart Association, cautions against being too aggressive too soon. “Let’s start out with the high-risk individuals and see how they do,” he says.

Not long after Hobbs and Cohen published their paper in 2006, they began to get invited to give keynote talks at major cardiology meetings. Soon after, the genetics community began to acknowledge the strength of their approach. In autumn 2007, then-NIH director Zerhouni organized a discussion at the annual meeting of the institutes’ directors to raise the profile of the rare-variant approach and contrast it with genome-wide studies. “Obviously, the two approaches are opposed to each other, and the question was, what was the relative value of each?” says Zerhouni. “I thought the PCSK9 story was a terrific example of an up-and-coming pattern of translational research” — indeed, he adds, “a harbinger of things to come”.

Hobbs and Cohen might not have found their gene if they had not had a hunch about where to look, but improved sequencing technology and decreasing costs now allow genomicists to incorporate the rare variant approach and to mount large-scale sweeps in search of such variants. “Gene sequencing is getting cheap enough that if there’s another gene like PCSK9 out there, you could probably find it genome-wide,” says Jonathan Pritchard, a population biologist at the University of Chicago, Illinois.

“What was amazing to us,” says Hobbs, “was that the genome project was spending all this time, energy, effort sequencing people, and they weren’t phenotyped, so there was no potential for discovery. We didn’t understand, and couldn’t understand, why everybody wasn’t doing what we were doing. Particularly when we started making discoveries.”

SOURCE:

Nature 496, 152–155 (11 April 2013) doi:10.1038/496152a

References
  1. Zhao, Z. et al. Am. J. Hum. Genet. 79, 514–523 (2006).

    Show context

  2. Victor, R. G. et al. Am. J. Cardiol. 93, 1473–1480 (2004).

    Show context

  3. Cohen, J. C. et al. Science 305, 869–872 (2004).

    Show context

  4. Seidah, N. G. et al. Proc. Natl Acad. Sci. USA 100, 928–933 (2003).

    Show context

  5. Abifadel, M. et al. Nature Genet. 34, 154–156 (2003).

    Show context

  6. Maxwell, K. N., Soccio, R. E., Duncan, E. M., Sehayek, E. & Breslow, J. L. J. Lipid Res. 44,2109–2119 (2003).

    Show context

  7. Horton, J. D. et al. Proc. Natl Acad. Sci. USA 100, 12027–12032 (2003).

    Show context

  8. Maxwell, K. N. & Breslow, J. L. Proc. Natl Acad. Sci. USA 101, 7100–7105 (2004).

    Show context

  9. Cohen, J. et al. Nature Genet. 37, 161–165 (2005).

    Show context

  10. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. N. Engl. J. Med. 354, 1264–1272(2006).

    Show context

  11. Horton, J. D., Cohen, J. C. & Hobbs, H. H. J. Lipid Res. 50, S172–S177 (2009).

    Show context

  12. Roth, E. M., McKenney, J. M., Hanotin, C., Asset, G. & Stein, E. A. N. Engl. J. Med. 367,1891–1900 (2012).

    Show context

  13. Koren, M. J. et al. Lancet 380, 1995–2006 (2012).

    Show context

  14. Poirier, S. et al. J. Neurochem. 98, 838–850 (2006).

    Show context

Author information

Affiliations

  1. Stephen S. Hall is a science writer in New York who also teaches public communication to graduate students in science at New York University.

Read Full Post »