Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Sequence motif’


Approach to Controlling Pathogenic Inflammation in Arthritis

Curator: Larry H Bernstein, MD, FCAP

A network approach to controlling pathogenic inflammation: Sequence sharing pattern peptides downregulate experimental arthritis

a new approach to network regulation of inflammation based on

Chai Ezerzer, Raanan Margalit and Irun R. Cohen

Aberrant inflammation probably results from aberrant regulation of the molecules that mediate inflammation; the actual molecules mediating inflammation –

  • chemokines,
  • cytokines, and
  • growth factors and their receptors –
    • would appear to be normal in their chemical structure.

If faulty regulation is indeed the problem,

  • a reasonable approach to alleviating inflammatory diseases might be to influence the interactions
  • within the network of connectivity of the disease-associated proteins (DAPs).
Aberrant inflammation appears to be a pathogenic factor in autoimmune diseases and other noxious inflammatory
conditions in which the inflammatory process
  1. is misapplied,
  2. exaggerated,
  3. recurrent or chronic.
The protein molecules involved in pathogenic inflammation—
disease-associated proteins (DAP )
  1. chemokines,
  2. cytokines, and
  3. growth factors and their receptors,
  • appear normal; their networks of interaction are at fault.

These researchers asked the question – 

  • whether shared amino acid sequence motifs among DAPs
  • might identify novel peptide treatments for regulating inflammation.

We aligned the sequences of 37 DAPs previously discovered to be associated with arthritis

  • to uncover shared sequence motifs.

We focused on chemokine receptor molecules because

  • chemokines and chemokine receptors play important roles in directing the migration of inflammatory cells into sites of tissue inflammation.
  •  different chemokine receptors shared amino acid sequence motifs in their extra-cellular loop domains (ECL2);
  • the ECL2 loop is outside of the known ligand binding site.

These shared sequence motifs established what we term a sequence-sharing network (SSN). SSN motifs exhibited very low E-values,

  • indicating their preservation during evolution.
This study demonstrates a new
  • approach to network regulation of inflammation based on peptide sequence motifs
  • shared by the second extra-cellular loop (EC L2) of different chemokine receptors;
  • previously known chemokine receptor binding sites have not involved the EC L2 loop.
These motifs of 9 amino acids, which were detected by sequence alignment, manifest very low E-values
  • compared with slightly modified sequence variations,
  • indicating that they were not likely to have evolved by chance.
To test whether this shared sequence network (SSN) might serve a regulatory function,
  • theysynthesized 9-amino acid SSN peptides from the EC L2 loops of three different chemokine receptors.
Theye administered these peptides to rats during the
Two of the peptides significantly downregulated the arthritis; one of the peptides
  • synergized with non-specific anti-inflammatory treatment with dexamethasone.
These findings suggest that
  • the SSN peptide motif reported here is likely to have adaptive value in controlling inflammation.
  • detection of SSN motif peptides could provide a network-based approach to immune modulation.
administering a highly connected chemokine receptor peptide motif , as done here, induced
  • the downregulation of inflammation in a rat model of arthritis.
Thus, study of the SSN provides a new network approach toward modulating inflammation
English: Typical chemokine receptor structure ...

English: Typical chemokine receptor structure showing seven transmembrane domains and a chanracteristic “DRY” motif in the second intracelluar domain. (Photo credit: Wikipedia)

Structure of Chemokines

Structure of Chemokines (Photo credit: Wikipedia)

Chemokine receptor

Chemokine receptor (Photo credit: Wikipedia)

 

Advertisements

Read Full Post »