Feeds:
Posts
Comments

Posts Tagged ‘Mobilization of T cells into the tumor’

Another Promise for Immune Oncology

Curator: Larry H. Berstein, MD, FCAP

 

 

Preclinical Data Presented at ASCO 2016 Annual Meeting Demonstrate that Single-Agent NKTR-214 Produces a Large Increase in Tumor-Infiltrating Lymphocytes to Provide Durable Anti-Tumor Activity

http://ir.nektar.com/releasedetail.cfm

SAN FRANCISCO, June 6, 2016 /PRNewswire/ — Nektar Therapeutics (NASDAQ: NKTR) today announced new preclinical data for NKTR-214, an immuno-stimulatory CD-122 biased cytokine currently being evaluated in cancer patients with solid tumors in a Phase 1/2 clinical trial being conducted at MD Anderson Cancer Center and Yale Cancer Center. The new preclinical data presented demonstrate that treatment with single-agent NKTR-214 mobilizes tumor-killing T cells into colon cancer tumors.  In addition, mouse pharmacodynamics data demonstrated that a single dose of NKTR-214 can increase and sustain STAT5 phosphorylation (a marker of IL-2 pathway activation) through one week post-dose. These data were presented at the American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, IL from June 3-7, 2016.

“These latest data build upon our growing body of preclinical evidence demonstrating the unique mechanism of NKTR-214,” added Jonathan Zalevsky, PhD, Vice President, Biology and Preclinical Development at Nektar Therapeutics. “The studies presented at ASCO show that NKTR-214 promotes tumor-killing immune cell accumulation directly in the tumor, providing a mechanistic basis for its significant anti-tumor activity in multiple preclinical tumor models.  The ability to grow TILs1 in vivo and replenish the immune system is exceptionally important. We’ve now learned that many human tumors lack sufficient TIL populations and the addition of the NKTR-214 TIL-enhancing MOA could improve the success of many checkpoint inhibitors and other agents, and allow more patients to benefit from immuno-therapy.”

In studies previously published for NKTR-214, when mice bearing established breast cancer tumors are treated with NKTR-214 and anti-CTLA4 (a checkpoint inhibitor therapy known as ipilimumab for human treatment), a large proportion of mice become tumor-free. Anti-tumor immune memory was demonstrated when tumor-free mice were re-challenged by implant with a new breast cancer tumor and then found to clear the new tumor, without further therapy.  The new data presented at ASCO demonstrate that upon re-challenge, there is a rapid expansion of newly proliferative CD8 T cells and particularly CD8 effector memory T cells. Both cell populations were readily detectable in multiple tissues (blood, spleen, and lymph nodes) and likely contribute to the anti-tumor effect observed in these animals. Adoptive transfer studies confirmed the immune-memory effect as transplant of splenocytes from tumor-free mice into naïve recipients provided the ability to resist tumor growth.

“NKTR-214 provides a highly unique immune activation profile that allows it to access the IL-2 pathway without pushing the immune system into pathological overdrive,” said Dr. Steve Doberstein, Senior Vice President and Chief Scientific Officer. “NKTR-214’s unique immune-stimulatory profile and antibody-like dosing schedule positions it as a potentially important medicine within the immuno-oncology landscape.”

The data presentation at ASCO entitled, “Immune memory in nonclinical models after treatment with NKTR-214, an engineered cytokine biased towards expansion of CD8+ T cells in tumor,” can be accessed at http://www.nektar.com/2016_NKTR-214_ASCO_poster.pdf

NKTR-214 is a CD122-biased agonist designed to stimulate the patient’s own immune system to kill tumor cells by preferentially activating production of specific immune cells which promote tumor killing, including CD8-positive T cells and Natural Killer (NK) cells, within the tumor micro-environment.  CD122, which is also known as the Interleukin-2 receptor beta subunit, is a key signaling receptor that is known to increase proliferation of these types of T cells.2

In preclinical studies, NKTR-214 demonstrated a highly favorable mean ratio of 450:1 within the tumor micro-environment of CD8-positive effector T cells relative to regulatory T cells.3 Furthermore, the pro-drug design of NKTR-214 enables an antibody-like dosing regimen for an immuno-stimulatory cytokine.4

About the NKTR-214 Phase 1/2 Clinical Study
A Phase 1/2 clinical study is underway to evaluate NKTR-214 in patients with advanced solid tumors, including melanoma, renal cell carcinoma and non-small cell lung cancer. The first stage of this study, which is expected to be complete in the second half of 2016, is evaluating escalating doses of single-agent NKTR-214 treatment in approximately 20 patients with solid tumors. The primary objective of the first stage of the study is to evaluate the safety and efficacy of NKTR-214 and to identify a recommended Phase 2 dose. In addition, the study will also assess the immunologic effect of NKTR-214 on TILs and other immune cells in both blood and tumor tissue, and it will also include TCR repertoire profiling. Dose expansion cohorts are planned to evaluate NKTR-214 in specific tumor types, including melanoma, renal cell carcinoma and non-small cell lung cancer.

The NKTR-214 clinical study is being conducted initially at two primary investigator sites: MD Anderson Cancer Center under Drs. Patrick Hwu and Adi Diab; and Yale Cancer Center, under Drs. Mario Sznol and Michael Hurwitz.  Patients and physicians interested in the ongoing NKTR-214 study can visit the “Clinical Trials” section of www.mdanderson.org using identifier 2015-0573 or visit https://medicine.yale.edu/cancer/research/trials/active/858.trial.

About Nektar
Nektar Therapeutics has a robust R&D pipeline and portfolio of approved partnered medicines in oncology, pain, immunology and other therapeutic areas. In the area of oncology, Nektar is developing NKTR-214, an immuno-stimulatory CD122-biased agonist, that is in Phase 1/2 clinical development for patients with solid tumors. ONZEALD™ (etirinotecan pegol), a long-acting topoisomerase I inhibitor, is being developed for patients with advanced breast cancer and brain metastases and is partnered with Daiichi Sankyo in Europe.  In the area of pain, Nektar has an exclusive worldwide license agreement with AstraZeneca for MOVANTIK™ (naloxegol), the first FDA-approved once-daily oral peripherally-acting mu-opioid receptor antagonist (PAMORA) medication for the treatment of opioid-induced constipation (OIC), in adult patients with chronic, non-cancer pain. The product is also approved in the European Union as MOVENTIG® (naloxegol) and is indicated for adult patients with OIC who have had an inadequate response to laxatives. The AstraZeneca agreement also includes NKTR-119, an earlier stage development program that is a co-formulation of MOVANTIK and an opioid. NKTR-181, a wholly owned mu-opioid analgesic molecule for chronic pain conditions, is in Phase 3 development. In hemophilia, Nektar has a collaboration agreement with Baxalta for ADYNOVATE™ [Antihemophilic Factor (Recombinant)], a longer-acting PEGylated Factor VIII therapeutic approved in the U.S. and Japan for patients over 12 with hemophilia A. In anti-infectives, the company has two collaborations with Bayer Healthcare, Cipro Inhale in Phase 3 for non-cystic fibrosis bronchiectasis and Amikacin Inhale in Phase 3 for patients with Gram-negative pneumonia.

Immune memory in nonclinical models after treatment with NKTR-214, an engineered cytokine biased towards expansion of CD8+ T cells in tumor

Deborah H. Charych, Vidula Dixit, Peiwen Kuo, Werner Rubas, Janet Cetz, Rhoneil Pena, John L. Langowski, Ute Hoch, Murali Addepalli, Stephen K. Doberstein, Jonathan Zalevsky | Nektar Therapeutics, San Francisco, CA

INTRODUCTION

• Recombinant human IL-2 (aldesleukin) is an effective immunotherapy for metastatic melanoma and renal cell carcinoma with durable responses in ~ 10% of patients, but side effects limit its use

• IL-2 has pleiotropic immune modulatory effects[1] which may limit its anti-tumor activity

• Binding to the heterodimeric receptor IL-2Rβγ leads to expansion of tumor-killing CD8+ memory effector T cells and NK cells

• Binding to the heterotrimeric IL-2Rαβγ leads to expansion of suppressive Treg which antagonizes anti-tumor immunity

• NKTR-214 delivers a controlled, sustained and biased signal through the IL-2 receptor pathway.

• The prodrug design of NKTR-214 comprises recombinant human IL-2 chemically conjugated with multiple releasable chains of polyethylene glycol (PEG)

• Slow release of PEG chains over time generates active PEG-conjugated IL-2 metabolites of increasing bioactivity, improving pharmacokinetics and tolerability compared to aldesleukin

• Active NKTR-214 metabolites bias IL-2R activation towards CD8 T cells over Treg[2]

 

NKTR-214 was engineered to release PEG at physiological pH with predictable kinetics.

The kinetics of PEG release was evaluated in vitro by quantifying free PEG over time using HPLC.

The release of PEG from IL-2 followed predictable kinetics. Symbols = measured data; Line = curve fit based on first order kinetic model. R2 =0.997

 

In mice, a single dose of NKTR-214 gradually builds and sustains pSTAT5 levels through seven days post-dose. In contrast, IL-2 produces a rapid burst of pSTAT5 that declines four hours post-dose

C57BL/6 mice were treated with either one dose of NKTR-214 (blue) or aldesleukin (red); blood samples were collected at various time points post-dose. pSTAT5 in peripheral blood CD3+ T cells was assessed using flow cytometry. Top graph is an inset showing the 0-4 hour time period. Bottom graph shows the full 10 day time course of the experiment. Histograms on right depict pSTAT5 MFI for IL-2 (red) and NKTR-214 (blue)

 

Mobilization of lymphocytes from the periphery into the tumor is an inherent property of NKTR-214

A. C57BL/6 mice bearing established subcutaneous B16F10 melanoma tumors were dosed with either NKTR-214 (2 mg/kg, i.v., q9d x2) or aldesleukin (3 mg/kg, i.p. bid x5, two cycles)

B. Tumor infiltrating lymphocytes were analyzed by flow cytometry from treated tumors (*, p<0.05 relative to vehicle; ‡, p<0.05 relative to aldesleukin)

C. Tumor growth inhibition from NKTR-214 was compromised when NKTR-214 was co-administered with Fingolimod, an agent that blocks lymphocyte trafficking.[3], (C57BL/6 mice, B16F10 subcutaneous mouse melanoma). Fingolimod was dosed qd p.o. 5 ug/animal. Lymphocyte count in blood was significantly reduced as expected, for study duration. Tumor growth inhibition (TGI) shown at study endpoint. (One-way ANOVA, Dunnets multiple comparison test ***=p<0.001, ****=p<0.0001 vs. vehicle; #=p<0.05 vs. NKTR-214)

D. Balb/c mice bearing established subcutaneous CT26 colon tumors were dosed with NKTR-214, 0.8 mg/kg i.v. q9dx3 or checkpoint inhibitors, 200 ug/mouse 2x/week. (*, p<0.05 relative to vehicle) E. T cell infiltration into mouse CT26 colon tumors was determined by TIL DNA fraction 7 days post-dose, Adaptive Biotechnologies, n=4 per group

 

The combination of NKTR-214 and anti-CTLA4 delivers durable anti-tumor activity and vigorous immune memory recall Durable treatment-induced immune memory demonstrated by:

A. Rejection of new tumors implanted into tumor-free mice without further therapy,

Durable anti-tumor immune memory demonstrated by rechallenging treated tumor-free mice with new tumors. New tumors can be eliminated without further treatment.

Balb/c mice initially were implanted with EMT6 murine breast tumors and treated with NKTR-214 0.8mg/kg q9dx3 and anti-CTLA4 200ug/mouse 2x/week. Several weeks later, tumor-free mice were rechallenged with tumor cells EMT6 (blue), CT26 (red) or vehicle (black). Tumor outgrowth occurred when non-related CT26 tumors were implanted. In contrast, tumors were rejected by up to 100% of mice when the same EMT6 tumors were implanted (2×106 EMT6 or CT26 cells)

B. Production of proliferating CD8 effector memory T cells in 3 tissues after tumor rechallenge and

Durable anti-tumor immune memory demonstrated by vigorous proliferative (Ki67+) CD8 T cell responses. The increased activity of these cells is greatest for mice previously treated with NKTR-214 and anti-CTLA4, rechallenged with the same tumor type (blue) compared to a different tumor (red) or mice who were never treated (brown, gray). Treated mice received therapy ~6 months prior. Top row shows total CD8+ cells, bottom row shows effector memory CD8+ in 3 tissues. The role of CD8 and NK cells in mediating the anti-tumor response was previously shown using depletion antibodies.[2]

Mice that became tumor-free from NKTR-214+anti-CTLA4 therapy and treatment naïve controls were rechallenged ~6 months later with either EMT6, CT26 or Sham buffer. No further treatment was given. Immune cells in spleen, lymph and blood were enumerated by flow cytometry, n=4/group. Graphs indicate proliferating Ki67+ total CD8 T cells (top) and effector memory CD8+ CD44hi CD67L-lo (bottom).

C. Transference of immune memory from tumor-free mice to recipient mice.

Durable anti-tumor immune memory demonstrated by adoptive spleen transfer from tumor-free mice to recipient mice. The recipients resist tumor growth without further treatment.

Mouse EMT6 breast tumors were implanted in recipient mice 1 day after receiving spleens from tumor-free mice or naïve mice; (****=p<0.0001 vs. normal control , two way ANOVA Tukey’s multiple comparison test, ns = non-significant)

 

CONCLUSIONS

• NKTR-214 mechanism of action delivers a controlled, sustained and biased signal to the IL-2 pathway, potentially mitigating systemic toxicities observed from bolus activation by IL-2 (aldesleukin)

• NKTR-214 provides marked efficacy in multiple tumor models, alone or in combination, using lower doses of reduced administration frequency

• Mobilization of T cells from the periphery into the tumor is an inherent property of NKTR-214

• NKTR-214 mechanism enables durable complete anti-tumor response with immune memory recall when combined with anti-CTLA4

• Treatment provides tumor-free mice that consistently eliminate new tumors even in the absence of further therapy • Mice becoming tumor-free from prior treatment reject new tumors by mounting a vigorous CD8+ effector memory response up to 6 months post-therapy

• Adoptive spleen transfer from tumor-free mice confers an anti-tumor response in recipient mice in the absence of further therapy

• NKTR-214 is being evaluated in an ongoing outpatient Phase 1/2 clinical trial for the treatment of solid tumors

 

REFERENCES

[1] Boyman et al, Nature Reviews, 2012

[2] Charych et al, Clinical Cancer Research, 2016

[3] Spranger et al, J. Immunoth.. Cancer, 2014

 

SOURCE

Click to access 2016_NKTR-214_ASCO_poster.pdf

 

 

Read Full Post »

%d bloggers like this: