Feeds:
Posts
Comments

Posts Tagged ‘extratunot microenvironment’


Breast Cancer Extratumor Microenvironment has Effect on Progression

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Tumor Microenvironment Diversity Predicts Breast Cancer Outcomes

GEN News Highlights   Feb 17, 2016   http://www.genengnews.com/gen-news-highlights/tumor-microenvironment-diversity-predicts-breast-cancer-outcomes/81252378/

 

Intratumor heterogeneity, it is known, can complicate cancer treatments. Now it appears the same may be true of tumor microenvironment heterogeneity. According to a new study from the Institute of Cancer Research (ICR), London, breast cancers that develop within an “ecologically diverse” breast cancer microenvironment are particularly likely to progress and lead to death.

The study took an unusual approach: It combined ecological scoring methods with genome-wide profiling data. This approach, besides showing clinical utility in the evaluation of breast cancer outcomes, demonstrated that even so contextual a discipline as genomics can benefit from being placed within a larger context. In this case, the context is essentially Darwinian, albeit at a small scale.

Natural selection is typically studied at the level of ecosystems consisting of animals and plants. In the current study, however, it was assessed at the level of the tumor microenvironment, which consists of cancer cells, immune system lymphocytes, and stromal cells.

The ICR scientists, led by Yinyin Yuan, Ph.D., presented their work February 16 in the journal PLoS Medicine, in an article entitled “Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis.” The article describes how the scientists developed a tumor ecosystem diversity index (EDI), a scoring system that indicates the degree of microenvironmental heterogeneity along three spatial dimensions in solid tumors. EDI scores take account of “fully automated histology image analysis coupled with statistical measures commonly used in ecology.”

“[EDI] was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set,” wrote the authors. “In high-grade (grade 3) breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types.”

By using the EDI, the ICR team was able to identify several particularly aggressive subgroups of breast cancer. In fact, the EDI was a stronger predictor of survival than many established markers for the disease.

The ICR researchers also looked at the EDI in addition to genetic factors. For example, the researchers found that the prognostic value of EDI was enhanced with the addition of TP53 mutation status. By integrating EDI data and genome-wide profiling data, the researchers identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors. These tumors, which showed high microenvironmental diversity, substratified patients into poor prognostic groups.

“Our findings show that mathematical models of ecological diversity can spot more aggressive cancers,” said Dr. Yuan. “By analyzing images of the environment around a tumor based on Darwinian natural selection principles, we can predict survival in some breast cancer types even more effectively than many of the measures used now in the clinic.

“In the future, we hope that by combining cell diversity scores with other factors that influence cancer survival, such as genetics and tumor size, we will be able to tell apart patients with more or less aggressive disease so we can identify those who might need different types of treatment.”

“This ingenious study…teaches us a valuable lesson,” added Paul Workman, Ph.D., chief executive of the ICR. “[We] should always remember that cancer cells are not developing and growing in isolation, but are part of a complex ecosystem that involves normal human cells, too. By better understanding these ecosystems, we aim to create new ways to diagnose, monitor and treat cancer.”

 

Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis

 

Background

The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters.

Methods and Findings

We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D) in solid tumors, termed the tumor ecosystem diversity index (EDI), using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3) breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2) breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10−4, hazard ratio = 1.47, 95% CI 1.17–1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26–2.52). Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size.

Conclusions

To our knowledge, this is the first study to couple unbiased measures of microenvironmental heterogeneity with genomic alterations to predict breast cancer clinical outcome. We propose a clinically relevant role of microenvironmental heterogeneity for advanced breast tumors, and highlight that ecological statistics can be translated into medical advances for identifying a new type of biomarker and, furthermore, for understanding the synergistic interplay of microenvironmental heterogeneity with genomic alterations in cancer cells.

Background

The human body contains millions of cells, all of which grow, divide, and die in an orderly fashion to build tissues during early life and to replace worn-out or dying cells and repair injuries during adult life. Sometimes, however, normal cells acquire genetic changes (mutations) that allow them to divide uncontrollably and to move around the body (metastasize), resulting in cancer. Because any cell in the body can acquire the mutations needed for cancer development, there are many types of cancer. For example, breast cancer, the most common cancer in women, begins when the cells in the breast that normally make milk become altered. Moreover, different types of cancer progress and evolve differently—some cancers grow quickly and kill their “host” soon after diagnosis, whereas others can be successfully treated with drugs, surgery, or radiotherapy. The behavior of individual cancers depends both on the characteristics of the cancer cells within the tumor and on the interactions between the cancer cells and the normal stromal cells (the connective tissue cells of organs) and other cells (for example, immune cells) that surround and feed cancer cells (the tumor microenvironment).

Why Was This Study Done?

Although recent studies have highlighted the importance of the tumor microenvironment for disease-related outcomes, little is known about how the heterogeneity of the tumor microenvironment—the diversity of non-cancer cells within the tumor—affects outcomes. Mathematical modeling suggests that tumors with heterogeneous and homogeneous microenvironments have different growth patterns and that heterogeneous microenvironments are more likely to be associated with aggressive cancers than homogenous microenvironments. However, the lack of methods to quantify the spatial variability and cellular composition across solid tumors has prevented confirmation of these predictions. Here, the researchers develop a computational system for quantifying microenvironmental heterogeneity in breast cancer based on tumor morphology (shape and form) in histological sections (tissue samples taken from tumors that are examined microscopically). They then use this system to analyze the associations between clinical outcomes, molecular changes, and microenvironmental heterogeneity in breast cancer.

What Did the Researchers Do and Find?

The researchers used automated image analysis and statistical analysis to develop the ecosystem diversity index (EDI), a numerical measure of microenvironmental heterogeneity in solid tumors. They compared the EDI with prognosis (likely outcome), key mutations, genome-wide copy number (tumor cells often contain abnormal numbers of copies of specific genes), and expression profiling data (the expression of several key proteins is altered in tumors) in a test set of 510 samples from patients with breast cancer and in a validation set of 516 additional samples. Among high-grade breast cancers (grade 3 cancers; the grade of a cancer indicates what the cells look like; high-grade breast cancers have a poor prognosis), but not among low-grade breast cancers (grades 1 and 2), a high EDI (high microenvironmental heterogeneity) was associated with a poor prognosis. Specifically, patients with grade 3 tumors and a high EDI had a ten-year disease-specific survival rate of 51%, whereas the remaining patients with grade 3 tumors had a ten-year survival rate of 70%. Notably, the combination of a high EDI with specific DNA alterations—mutations in a gene called TP53 and loss of genes on Chromosomes 4p14 and 5q13—improved the accuracy of prognosis among patients with grade 3 breast cancer and stratified them into subgroups with disease-specific five-year survival rates of 35%, 9%, and 32%, respectively.

What Do These Findings Mean?

These findings establish a method for measuring the spatial heterogeneity of the microenvironment of solid tumors and suggest that the measurement of tumor microenvironmental heterogeneity can be coupled with information about genomic alterations to provide an accurate way to predict outcomes among patients with high-grade breast cancer. The association between EDI, specific genomic alterations, and outcomes needs to be confirmed in additional patients. However, these findings suggest that microenvironmental heterogeneity might provide an additional biomarker to help clinicians identify those patients with advanced breast cancer who have a particularly bad prognosis. The ability to identify these patients is important because it will help clinicians target aggressive treatments to individuals with a poor prognosis and avoid the overtreatment of patients whose prognosis is more favorable. Finally, and more generally, these findings describe a new way to investigate the interactions between the tumor microenvironment and genomic alterations in cancer cells.

Additional Information

This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001961.

Citation: Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, et al. (2016) Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis.
PLoS Med 13(2): e1001961.     http://dx.doi.org:/10.1371/journal.pmed.1001961
Fig 1. In silico tumor dissection pipeline for quantifying spatial diversity in the tumor ecosystem.
Fig 1. In silico tumor dissection pipeline for quantifying spatial diversity in the tumor ecosystem. (A) Flow diagram depicting the overall study design. (B) Schematic of our pipeline for quantifying spatial diversity in pathological samples. H&E sections are morphologically classified and divided into regions to be spatially scored. The number of clusters k in the regional scores is indicative of the number of sub-populations of cell types in the tumor regions. (C) Examples of tumor regions with low and high diversity scores using the Shannon diversity index, accounting for cancer cells (outlined in green), lymphocytes (blue), and stromal cells (red). Cell classification is automated by image analysis. (D) The 3-D landscape of cell diversity scores on an example H&E section; the x- and y-axes are the geometric axes of the image, and the z-axis is cell diversity computed on a region-by-region basis. (E) The distribution of regional scores in a tumor from the METABRIC study with two regional clusters identified using Gaussian mixture clustering (grey shading: histogram; dashed black line: density; solid black lines: mixture components/clusters).
Fig 2. Application of EDI to 1,026 breast tumors from the METABRIC study.
Fig 2. Application of EDI to 1,026 breast tumors from the METABRIC study. (A) The frequencies of EDI scores in breast tumors. (B) H&E staining, distribution of classified cells (green: cancer; blue: lymphocyte; red: stromal cells), and the heatmap of regional diversity scores for a tumor with the highest EDI score (EDI = 5). (C) Representative regions from each of the clusters k1–k5 are shown in a tumor with EDI = 5, with cluster k1 having the lowest diversity score and k5 the highest. By mapping regional clusters to the H&E image, we can begin to interpret these clusters with different cell diversity. We observed predominantly cancer cells in k1, increasingly more stromal cells and ductal in situ carcinoma cells (DCIS) in k2, and a vessel in k3. Cluster k4 features extensive stromal lymphocytes between ductal in situ carcinoma components, while k5 shows tumor-infiltrating lymphocytes (TIL) associated with invasive carcinoma cells.
Fig 3. Reproducibility, stability, and independence of the EDI-high group in 507 grade 3 breast tumors.
Fig 3. Reproducibility, stability, and independence of the EDI-high group in 507 grade 3 breast tumors. (A) Kaplan–Meier curves of disease-specific survival to illustrate the prognosis of EDI-high samples compared to other grade 3 samples in two independent patient cohorts. Shown below the graph are the number of patients (the number of disease-specific events) per group for EDI-low (grey) and EDI-high (red). (B) Agreement of the EDI subtyping between 100% data and resampling with progressively fewer tumor regions in 200 repeats. (C) Distribution of known subtypes in grade 3 tumors stratified by EDI; asterisks mark subtypes enriched in the EDI-high group. (D) Kaplan–Meier curves illustrating the duration of disease-specific survival according to tumor size (left) and improvement of stratification with the addition of EDI information (right).
Accumulating evidence suggests that the interactions of cancer cells and stromal cells within their microenvironment govern disease progression, metastasis, and, ultimately, the evolution of therapeutic resistance [1–3]. Recent reports have highlighted the significance of the contribution of stromal gene expression and morphological structure as powerful prognostic determinants for a number of tumor types, emphasizing the importance of the tumor microenvironment in disease-related outcomes [4–7]. In breast cancer, a number of studies have demonstrated the prognostic correlation of individual cell types, including the immune cell infiltrate that predicts response to therapy [8–10], and the high percentage of tumor stroma that predicts poor prognosis in triple-negative disease but good prognosis in estrogen receptor (ER)–positive disease [11,12]. Nevertheless, different types of cells coexist with varying degrees of heterogeneity within a tumor. This fundamental feature of human tumors and the combinatorial effects of cell types have been largely ignored, and the collective implications for clinical outcome remain elusive. Consistent observations from mathematical models have highlighted that tumors with diverse microenvironments show growth patterns dramatically different from those of tumors with homogeneous environments [13] and are more likely to be associated with aggressive cancer phenotypes [2] that select for cell migration and eventual metastasis by allowing cancer cells to evolve more rapidly [14]. These observations highlight the need to understand the collective physiological characteristics and heterogeneity of tumor microenvironments. However, there is a lack of methods to quantify the high spatial variability and diverse cellular composition across different solid tumors. Moreover, the interplay of genomic alterations in cancer cells and microenvironmental heterogeneity and its subsequent role in treatment response have not been explored. Our aims were (i) to develop a computational system for quantifying microenvironmental heterogeneity based on tumor morphology in routine histological sections, (ii) to define the clinical implications of microenvironmental heterogeneity, and (iii) to integrate this histologybased index with RNA gene expression and DNA copy number profiling data to identify molecular changes associated with microenvironmental heterogeneity.
The Ecosystem Diversity Index To characterize the tumor ecosystem based on cell compositions, we developed a new index to be used in conjunction with our image analysis tool [16]. First, we used our automated morphological classification method [16] to identify and classify cells into cancer, lymphocyte, or stromal cell classes in H&E sections (Fig 1B). We next divided sections into smaller spatial regions and quantified the diversity of the tumor ecosystem in a tumor region j using the Shannon diversity index: dj ¼ Sm i pi logpi ; ð1Þ where m is the number of cell types and pi is the proportion of the ith cell type (Fig 1B and 1C). A high value of the Shannon diversity index dj reports a heterogeneous environment populated by many cell types, whilst a low value indicates a homogeneous environment (Fig 1C). Compared to other methods such as the Simpson index, the Shannon diversity index accounts for rare species and, hence, is less dominated by main species [17]. Subsequently, we derived the ecosystem diversity index (EDI) by applying unsupervised clustering that identifies the optimum number of clusters in the dataset in an unbiased manner, in order to group tumor regions and quantify the degree of spatial heterogeneity. Let D = d1,d2,…,dn be the Shannon index for n regions in a tumor. We used Gaussian mixture models to fit data D: D SK k¼1okNðmk; s2 kÞ: ð2Þ where μk, ,s2 k, and ωk are the mean, variance, and weight of a Gaussian distribution k, and K is the number of clusters. The Bayesian information criterion was then used to select the best number of clusters K [18]. We used K = 1–5 as the range of K to avoid small EDI groups (S1 Text). The final value of K thus is a measurement of heterogeneity and the score of EDI for a tumor.
Fig 5. The relationship between ecological heterogeneity and cancer genomic aberrations in 507 grade 3 tumors. (A) Genome-wide copy number aberrations in grade 3 breast tumors and genomic coordinates of genes with copy number aberrations enriched in the EDI-high group. Lengths of black lines denote level of enrichment significance with copy number gains (above the horizontal line) or losses (below the horizontal line). (B) Kaplan–Meier curves illustrating the duration of disease-specific survival in grade 3 breast cancer patients according to copy number loss of the 4p14 region (left) and the EDI-high group with additional information of 4p14 copy number loss (right). (C) Kaplan–Meier curves illustrating the duration of disease-specific survival according to copy number loss of the 5q13 region (left) and the EDI-high group with additional information of 5q13 copy number loss (right).
This study has a number of limitations. The motivation for our computational development was to use a data-driven model and measure the degree of spatial heterogeneity in tumor pathological specimens. In this model, only three major cell types in breast tumors were considered. Further sub-classification of the different types of stromal and immune cells by immunohistochemistry may add additional discriminatory value to our model. For dissecting spatial heterogeneity, we chose to use square regions with equal sizes. We found that EDI was correlated with the size of the region chosen for calculation of the Shannon diversity index, and as such the spatial heterogeneity is scale dependent. This phenomenon has been well described in a number of studies in ecology that show that a scale needs to be chosen that is appropriate for the ecological process under study [38,39], further highlighting the analogy between tumor studies and ecology. Similar to the recent observation that breast cancer subclonal heterogeneity is correlated with tumor size [35], we also found an association between microenvironmental heterogeneity and tumor size; hence, EDI may have more limited value in smaller tumors. However, small tumors were present in the EDI-high group, and addition of EDI within tumors grouped by size further stratified their prognosis. We found that EDI was prognostic only in grade 3 tumors in our study, which could be a limitation, given the possible discordance in grading between pathologists.
The identification of additional biomarkers in subgroups of patients that identify them as high risk is important for patient management and to avoid overtreatment for low-risk patients. We envision that the use of our measure of microenvironment heterogeneity, together with key genomic alterations, will enable the diagnosis of patients at very high risk of relapse and facilitate the enrollment of these patients into additional clinical trials for novel therapies or treatment intensification. Our novel computational approach provides a fully automated tool that is relatively easy to implement. Integration of this measure with genomic profiling provides additional prognostic information independent of known clinical parameters. The results of this study highlight the possibility of a grade-3-specific prognostic tool that may aid in further classification of high-grade breast cancer patients beyond standard assays such as ER and HER2 status.

 

Read Full Post »