Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Experimental Pathology’


Outstanding Achievement in Pathology

Curator: Larry H Bernstein, MD, FCAP

 

Olympus America Honors Outstanding Pathologists During First Annual “Unsung Heroes” Awards

Melville, Ny—Tracey Corey Handy, M.D., Chief Medical Examiner of Kentucky, and Matthew Zarka, M.D., affiliated with the University of Vermont and the Fletcher Allen Health Center, were recognized as the 1999 winners of the “Unsung Heroes” Awards. The awards, sponsored by Olympus America Inc., a world leading manufacturer of microscopes, in cooperation with the College of American Pathologists (CAP), were presented at a ceremony during the Fall CAP Conference in New Orleans.

The awards are the first in the on-going “Unsung Heroes” program sponsored by Olympus for the purpose of increasing public awareness of the vital and often invisible role pathologists have in saving lives. In addition to their expertise with a microscope, pathologists are the doctors who ensure that clinical laboratory testing is reliable and that diseases are accurately diagnosed. They are on the front lines whenever the public is threatened with disease. Their role in forensic science is crucial in helping prevent people from falling prey to abuse or avoidable illness. As Dan Biondi, Olympus Senior Vice President, points out, “Olympus is committed to supporting the work of the world’s pathologists and to advocating an educated patient population.”

Dr. Tracey Corey Handy is recognized as an “Unsung Hero” for her role in upgrading the well-being of children as Kentucky’s Chief Medical Examiner. Along with several colleagues, Dr. Handy founded the state’s “Living Forensics” team in 1991. Since its inception, the team has consulted on more than 700 cases of suspected child abuse. This effort has led to an increased conviction rate of abuse perpetrators and helps to reduce further cases of child abuse. In addition, Dr. Handy has initiated a program of routine screening for metabolic defects apparent in victims of Sudden Infant Death Syndrome (SIDS), which has resulted in the correct diagnosis of conditions that would have otherwise been attributed to SIDS. Dr. Handy has also chaired the state’s first child mortality review group that has resulted in the initiation of prevention programs, particularly in the event of accidental child death. A frequent speaker and contributor of her expertise to organizations throughout the country, she also teaches forensic pathology and has been published in more than a dozen peer-reviewed journals and books.

Dr. Matthew Zarka is recognized as an “Unsung Hero” for his efforts in aiding the extremely poor Mexican-Indian population in the remote mountain regions of Oaxaca, Mexico. Over the last two years Dr. Zarka has volunteered his time and services to bring much needed medical care to these impoverished communities. He and his OB/GYN team have been setting up the very first clinics throughout the area, enjoining the coffee companies of Mexico to spread word of the clinics to the local population and to help transport patients to the clinics. After each female patient underwent a gynecological examination, Dr. Zarka stained and read her Pap test. When needed, more extensive evaluations, biopsies, treatment and counsel were provided. Overwhelmingly successful, Dr. Zarka’s outreaching medical mission has grown to include additional professional staff. By volunteering his time and expertise, Dr. Zarka provides the only real access most people of the region have to modern medical care. His contribution has undoubtedly saved lives that might otherwise have been lost.

Stanford University

Benjamin Pinsky, MD, PhD, Assistant Professor of Pathology and Medicine (Infectious Diseases) is the recipient of the 2014 Siemens Healhcare Diagnostics Young Investigator Award.  This award “honors outstanding laboratory research in clinical microbiology or antimicrobial agents and is intended to further the career development of a young clinical scientist and promote awareness of clinical microbiology as a career.”

Stephen J. Galli, MD, Chair of Pathology, Professor of Pathology and Microbiology and Immunology, and the Mary Hewitt Loveless, MD Professor, is the recipient of the 2014 ASIP (American Society of Investigative Pathology) Rouse Whipple Award.  This award is presented to a senior scientist with a distinguished career in research who has advanced the understanding of disease and has continued productivity at the time of this award.

Dr. Raffick Bowen, Clinical Associate Professor and Associate Medical Director of SHC’s Clinical Chemistry and Immunology Laboratory is the recipient of the American Association of Clinical Chemistry’s Outstanding Speaker Award for 2013. This award recognizes his achievement in earning a speaker evaluation rating of 4.5 or higher during a 2013 continuing education activity accredited by AACC. The title of Dr. Bowen’s presentation is “Implementation of Autoverification in a Clinical Chemistry Laboratory: Theory to Practice”

Richard Kempson, MD,

Emeritus Professor of Pathology, is the recipient of the 2014 United States and Canadian Academy of Pathology (USCAP) President’s Award. The USCAP President’s Award is given annually to recognize an individual for outstanding service to the field of pathology.

Dr. Kempson is richly deserving of this award. Dr. Kempson has not only contributed substantially to the surgical pathology literature, particularly in gynecologic and soft tissue pathology but also, with Dr. Ronald Dorfman, he trained a substantial percentage of this and the next generation’s academic and community leaders in surgical pathology.

Dr. Kempson’s affiliation with Stanford University began in 1968 when he and Dr. Ronald Dorfman were recruited to Stanford to develop a program in surgical pathology. In short order, they established an internationally recognized residency and clinical fellowship program which went on to train more than 275 pathologists in the art and science of diagnostic surgical pathology. Dr. Kempson developed a distinctive teaching style that emphasized precise diagnostic criteria, approaching diagnosis with a broad morphologic differential diagnosis, and most importantly, always highlighting the relevance to patient management of the morphologic distinctions being made.

Prior to his recruitment to Stanford, Dr. Kempson was an Assistant Professor of Pathology and Surgical Pathology at Washington University. Dr. Kempson served as an Associate Professor of Pathology at Stanford from 1968 to 1974 and a Professor of Pathology from 1974 to 2001. In addition to his academic duties, he served as Co-Director of Surgical Pathology from 1968 until 2001. He also has served as President of the Association of Directors of Surgical Pathology (1993-1995), the United States and Canadian Academy of Pathology (1996) and the Arthur Purdy Stout Society (1996) and the California Society of Pathologists. The Richard Kempson, MD, Professorship in Surgical Pathology was established by the Department of Pathology in 2002 to honor him and his remarkable contributions to surgical pathology.

University of California, San Diego

A new era in diagnostics has emerged within the concept of Personalized Medicine. Imagine selecting cancer chemotherapy drugs based on knowledge of the precise mutations in a cancer. Can we predict who may have an adverse response to a medication based on that individual’s genetic blueprint? At UCSD, we are dedicated to making these resources available to our patients in the very near future. This is why we recently established the Pathology Center for Personalized Medicine. The goal of the Center is to conduct leading research necessary to form the foundation for advanced personalized medicine diagnostic testing and then to make this testing available in the CALM. For more information on the Center for Personalized Medicine, click here.

The research enterprise in Pathology at UCSD has grown dramatically in the past five years, and we are now amongst the top 15 programs in the country. Basic and translational research laboratories in the UCSD Pathology Department tackle important problems concerning cancer development and progression, angiogenesis, stem cell biology, neurodegenerative diseases, peripheral neuropathy, inflammation, infectious diseases, and wound healing. Our laboratories provide excellent environments for learning cell biology, molecular genetics, biochemistry, and animal physiology. Our faculty includes many active participants in the Biomedical Sciences (BMS) Graduate Program. For more information on this program, click here. We also have excellent opportunities for postdoctoral researchers. Please click here to visit our web page on summarizing the Pathology Department research enterprise. Then visit individual web pages for each of our faculty member to view specific research interests.

The Department of Pathology is home to both an outstanding Comparative Pathology and Medicine Program (for more information, click here) and the UCSD Research Ethics Program. We provide major educational support to the School of Medicine and the Skaggs School of Pharmacy and Pharmaceutical Sciences. For further information on these training opportunities, click here.

The La Jolla/San Diego community is a fertile environment for research and the pharmaceutical industry. The Sanford Burnham Medical Research Institute, the Scripps Research Institute, the Sidney Kimmel Cancer Center, the Salk Institute for Biological Studies, and the La Jolla Institute for Allergy and Immunology house exciting scientific programs and provide for numerous scientific collaborations. We also boast a plethora of biotechnology companies, located nearby on the La Jolla mesa.

The overall theme and focus of the Department of Pathology is to elucidate the molecular basis and pathology of human disease.  The faculty is comprised of basic, translational and physician scientists that utilize the latest techniques in genomics, proteomics, cell biology, molecular biology and physiology to develop new diagnostic and therapeutic approaches for a wide range of diseases, including cancer, neurological disease, microbial infection, and inflammatory disease.

Steven L. Gonias, M.D., Ph.D.

Our laboratory is interested in identifying and characterizing novel pathways by which proteases and their cell-surface receptors regulate cell physiology. We are particularly interested in the function of proteases in cancer but also have active projects related to peripheral nerve injury, Alzheimer’s disease and cardiovascular biology. One focus involves urokinase-type plasminogen activator (uPA), a serine protease and plasminogen activator that binds with high affinity to a GPI-anchored receptor called uPAR. This event activates multiple cell-signaling pathways that affect cell migration, survival, and phenotype. We are actively working to elucidate mechanisms by which uPAR-initiated cell-signaling promotes cancer metastasis. We are particularly interested in breast cancer, but also work on prostate cancer and cancers of the central nervous system.

The complex of uPA with its inhibitor, PAI-1, is a ligand for a receptor called LRP-1. LRP-1 also is the receptor for other ligands, including extracellular matrix proteins, growth factors and foreign toxins. Our laboratory elucidated a pathway in which LRP-1 regulates cell-signaling indirectly, by regulating the cell-surface level of uPAR. However, recent studies suggest that LRP-1 also directly regulates cell-signaling by binding adaptor proteins, such as Shc and JIP. By this mechanism, LRP-1 regulates cell survival and gene transcription. Our current re­search is aimed at determining the role of LRP-1 in cancer and peripheral nerve injury, using in vitro and in vivomodel systems. Using proteomics approaches, we also are actively investigating the ability of LRP-1 to model the composition of the plasma membrane.

Our third area of focus concerns the plasma protease inhibitor, alpha2M. Our laboratory has demonstrated that this protein functions as a conformation-dependent carrier of growth factors. Alpha2M may also function in cell-signaling by binding to LRP-1. By site-directed mutagenesis, we have iso­lated and individually modified various functional sites in this multifunc­tional protein.

David Bailey, MD, PhD

David N. Bailey received his Bachelor of Science degree in Chemistry “with high distinction” from Indiana University and his Doctor of Medicine degree from Yale University.  He completed a National Institutes of Health postdoctoral fellowship in Laboratory Medicine and a residency in Clinical Pathology, both at Yale, serving as Chief Resident in his final year.  He is certified in Clinical Pathology and Chemical Pathology by the American Board of Pathology.

Dr. Bailey joined the University of California (UC) San Diego faculty in 1977 and served as Director of the Toxicology Laboratory of UC San Diego Medical Center (1977-2007), Head of the Division of Laboratory Medicine (1983-1989, 1994-1998), Acting Chair (1986-1988) and permanent Chair of the Department of Pathology (1988-2001),  Director of the Pathology Residency Program (1986-1999), Director of Clinical Laboratories of UCSD Medical Center (1982-1999), Interim Vice Chancellor for Health Sciences and Dean of the UC San Diego School of Medicine (1999-2000 and 2006-2007), Deputy Vice Chancellor for Health Sciences (2001-2007), and Dean for Faculty & Student Matters in UC San Diego School of Medicine (2003-2007).  From 2007 to 2009, he was Vice Chancellor for Health Affairs, Dean of the School of Medicine, and Professor of Pathology and Laboratory Medicine at the University of California, Irvine.

Dr. Bailey was recognized by the Institute of Scientific Information as one of the world’s ten most cited authors in forensic sciences (1981-93). He received the Gerald T. Evans Award from the Academy of Clinical Laboratory Physicians and Scientists in 1993 for his leadership and service to the Academy.  Dr. Bailey has served as President of the California Association of Toxicologists (1981-1982), President of the Academy of Clinical Laboratory Physicians and Scientists (1988-89), and Secretary-Treasurer of the Association of Pathology Chairs (1996-99).  He has also served on the Chemical Pathology Test Development and Advisory Committee of the American Board of Pathology; the Editorial Boards of Clinical Chemistry, the Journal of Analytical Toxicology, and the American Journal of Clinical Pathology; the Doris A. Howell Foundation for Women’s Health Research Board of Directors; the Board of Directors of the George G. Glenner Alzheimer’s Family Centers, Inc.; the Board of Directors of the Children’s Hospital of Orange County; the Board of Directors of Children’s Healthcare of California; the Board of Directors of the Rady Children’s Hospital of San Diego; the Board of Directors of the Veterans Medical Research Foundation (San Diego); and the Executive Committee and Governing Board of the California Institute of Telecommunications and Information Technology, among others.

David A. Herold, M.D., Ph.D.

My laboratory research interests are in the area of mass spectrometry application to clinical diagnostics. This includes prostaglandins, trace metal and steroids. Additionally, we has been involved in the development and validation of “classical” clinical chemistry diagnostic tests. The application of the mass spectrometry to determine the validity of endocrine tests, in particular testosterone, has been of particular interest. We have been using GC-MS, LC-MS, and MS-MS techniques for these investigations. At the present time, we are involved with the use of Accelerator Mass Spectrometry for the determination of calcium flux in serum and urine using 41Ca as a marker. The purpose of these studies is to better understand bone remodeling in normal and diseased patients. We have also investigated the use of microfluidics for the application to clinical diagnostics to measure selected proteins in a rapid and accurate manner.

 

David Cheresh, Ph.D.

Tumor growth, invasion, stem cells and drug resistance. Molecular regulation of tumor growth and angiogenesis. Drug development targeting molecular pathways involved in tumor growth metastasis and angiogenesis.

The Cheresh laboratory focuses on the discovery of molecular pathways involved in the progression of cancer. Cheresh’s earlier work identified integrin αυβ3 as a biomarker of tumor angiogenesis and tumor progression, and was involved in the discovery of a drug called cilentigide which targets integrins αυβ3 and αυβ5.

The Cheresh laboratory has identified a series of critical microRNAs that regulate the growth of blood vessels.  These microRNAs control the angiogenic switch that occurs during the earliest stages of tumor growth and neovascularization in the retina.  As such one of these microRNAs may have therapeutic application as it is capable of maintaining blood vessels in the quiescent state.

Cheresh and colleagues have identified integrin αυβ3 as a biomarker of tumor stem cells during intrinsic or acquired resistance of a wide range of tumors including: cancer of the lung, pancreas, breast, and colon.   Cheresh and his lab discovered that αυβ3 expression is both necessary and sufficient to account for tumor stemness and drug resistance based on its ability to drive a molecular pathway regulating these processes.  This has led to the development of new therapeutic strategies to resensitize patients to drugs such as erlotinib and lapatinib that target EGFR.

The Cheresh laboratory has identified RAF kinase as an important target involved in tumor growth and angiogenesis.  They have developed a new drug design strategy to target RAF and other relevant kinases by designing allosteric inhibitors of these targets.  This is based on the use of defined chemical scaffolds to dock into an allosteric pocket on these kinases to render them inactive.  The combined use of in silico and biological screening has yielded drugs with nM anti-tumor activity that produce strong anti-tumor growth in mouse models following once a day oral dosing.   This approach appears to yield drugs that target tumors that are resistant to ATP mimetic inhibitors of RAF, Kit or PDGFR

John Lowe

Senior Director, Pathology

I joined Genentech in 2008 as Senior Director of Pathology, after having spent more than 18 years as an HHMI Investigator at the University of Michigan and then 3 years as Chair of Pathology at Case Western Reserve University School of Medicine. The role of Senior Director of Pathology in Research at Genentech offered attractive opportunities to do research in an outstanding, disease-focused scientific environment, while also helping to lead the scientific and research support activities of the Pathology department. These latter efforts help Genentech continue to make a major positive difference to the health and well being of a large number of patients afflicted with cancer, autoimmune syndromes, neurodegenerative diseases and other illnesses for which therapies are unsatisfactory or nonexistent.

An exceptional team of pathologists, laboratory managers, scientific associates and administrative staff in the department collaborate with me in these efforts. Additional outstanding pathologists, scientists, and managers continue to be recruited to assist us in ensuring that the department performs at the highest level. Our task is made more straightforward by the environment at Genentech, which is characterized by exceptionally bright, motivated and collaborative colleagues at every level, spectacular facilities, and workplace philosophies that are conducive to the highest levels of achievement.

Postdoctoral Mentor

The opportunity to mentor postdoctoral fellows at Genentech has been a stimulating and gratifying experience for me. This derives in part from the freedom afforded by the program to pursue research directions that are deemed to be important and interesting, even if these have no immediate therapeutic relevance. The special mentoring experience also derives from extraordinary breadth and quality of the core laboratories at Genentech, and the spectacular intellectual environment. Together, these circumstances provide an unparalleled opportunity for postdoctoral fellows, and their mentors, to engage in biomedical discovery of the highest caliber.

Advertisements

Read Full Post »