Posts Tagged ‘CE mark’

Direct Flow Medical Wins European Clearance for Catheter Delivered Aortic Valve

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 7/15/2018

Direct Flow Medical, which markets a CE-marked transcatheter aortic valve implantation (TAVI) device, has closed after funding from a Chinese pharmaceutical company did not come through. According to newspaper The Press Democrat, all 250 company’s employees have been made redundant and it officially ceased trading on 30 November.

The paper reports that Direct Flow’s former president and chief executive officer Dan Lemaitre, in a phone interview, told them the company had expected an influx of funding from a Chinese pharmaceutical company on 18 November but the deal collapsed two days before the money was scheduled to arrive. Lemaitre said this was because “the terms of which were changed dramatically in a very unacceptable fashion.”

The Press Democrat claims that the 12-year-old company had no other options and its lender—PDL BioPharma Inc—refused to extend the US$65 million funding arrangement it had with Direct Flow for the past three years and foreclosed upon the business.




TAVI company Direct Flow Medical closes after failing to secure funding


Catheter Delivered Aortic Valve from Direct Flow Medical Wins European Clearance (w/video)

by GENE OSTROVSKY on Jan 28, 2013 • 1:32 pm

Direct Flow Medical valve 2 Catheter Delivered Aortic Valve from Direct Flow Medical Wins European Clearance (w/video)Having unveiled attractive results of a study on its transcatheter aortic valveDirect Flow Medical (Santa Rosa, CA) has just announced CE Mark approval for the device. The polymer frame prosthesis sits on top of the diseased natural valve with its inflatable rings guaranteeing contact along the perimeter.Direct Flow Medical v Catheter Delivered Aortic Valve from Direct Flow Medical Wins European Clearance (w/video)

Since the new valve only uses physical pressure from the inflatable rings to hold on, it can be repositioned at any time or removed completely if necessary.

Here’s more about the valve from its product page:

The bovine pericardial leaflets are attached to an inflatable polyester fabric cuff which conforms to the native aortic valve annulus and left ventricular outflow tract to form a seal to minimize the potential of paravalvular leak. The Bioprosthesis is designed with independently inflatable ventricular and aortic rings, which encircle and capture the native valve annulus to provide positive axial anchoring of the device. Inflation of the cuff with a saline and contrast solution renders the valve immediately functional and permits fluoroscopic visualization. Before final deployment, the saline and contrast mixture is exchanged under pressure, maintaining cuff shape and position, with a solidifying Polymer that hardens to form the permanent support structure.



Direct Flow Medical: Transcatheter Aortic Valve


Flashback: Direct Flow Medical Transcatheter Aortic Valve Does Well in Clinical Study

Product page: Direct Flow Medical Transcatheter Aortic Valve System…




Other articles related to this topics were published on this Open Access Online Scientific Journal, include the following:

August 7, 2012 – Transcatheter Aortic Valve Implantation (TAVI): risk for stroke and suitability for surgery


August 2, 2012 – Transcatheter Aortic Valve Implantation (TAVI): Risky and Costly


June 4, 2012 – Investigational Devices: Edwards Sapien Transcatheter Aortic Valve Transapical Deployment http://pharmaceuticalintelligence.com/2012/06/04/investigational-devices-edwards-sapien-transcatheter-heart-valve/

June 10, 2012 — Investigational Devices: Edwards Sapien Transcatheter Aortic Heart Valve Replacement Transfemoral Deployment http://pharmaceuticalintelligence.com/2012/06/10/investigational-devices-edwards-sapien-transcatheter-aortic-heart-valve-replacement-transfemoral-deployment/

Read Full Post »

Patient Access to Medical Devices — A Comparison of U.S. and European Review Processes

Reporter: Aviva Lev-Ari, PhD, RN


Saptarshi Basu, M.P.A., and John C. Hassenplug, M.Sc.

N Engl J Med 2012; 367:485-488  August 9, 2012

The U.S. process for approving innovative, high-risk medical devices has been criticized for taking longer than the European approval process.1 This contention is often used to support the argument that the Food and Drug Administration (FDA) should lower its standards for approving medical devices, since a slow approval process is delaying Americans’ access to innovative and lifesaving technology. But a review of the data, using appropriate end points, suggests instead that it takes the same amount of time or less for patients to gain access to innovative, high-risk medical devices in the United States as it does in the four largest European markets (Germany, France, Italy, and Britain)2 — largely because patient access is generally delayed until reimbursement decisions are made, which often takes substantially longer in Europe than in the United States.

To compare the United States and Europe fairly on this front, three criteria must be considered: the level of device innovation, equivalent start and end points, and patient access as defined by time to reimbursement. First, we focused on innovative, high-risk devices because in the United States such devices require the strongest evidence of clinical benefit and are the subject of most debates about the relative effectiveness of approval processes in different countries. Furthermore, previous studies have shown that lower-risk devices achieve market access in a similar amount of time in the United States and in Europe.

Second, an accurate comparison of time to market access requires measurement of the total time that elapses between application submission and market access. Previous studies have compared the chronologic dates of application submission and market access, but the date an application is submitted varies from country to country.

Third, patient access should be equated with the availability of reimbursement rather than with device approval, because broad patient access to a new device doesn’t occur until reimbursement by a national or third-party payer is available. Previous comparisons of the U.S. and European systems have used the approval date to measure process duration, but innovative, high-risk devices don’t reach a market where most patients can benefit from them immediately after gaining regulatory approval, though they may be accessible to patients who can afford to pay out of pocket. Rather, there is a second level of review through which public or private insurers decide whether and at what price they will pay for a device. Generally, public systems take longer than private insurers to make reimbursement decisions, and significantly more Europeans than Americans have public insurance. Two thirds of the U.S. population is covered by private health insurance, whereas only a fifth receives publicly funded reimbursement, primarily administered by the Centers for Medicare and Medicaid Services (CMS).

For both private and public systems in the United States, the pathway to patient access to a device starts with the submission of an application to the FDA. The FDA reviews innovative, high-risk devices for safety and effectiveness (clinical benefit) under the premarket approval (PMA) process, and information on the duration of reviews is publicly available. In fiscal year 2011, the FDA approved 40 applications for PMA. The average review time was 13.1 months, with 8.4 months attributed to FDA review time, and 4.7 months to the time the agency waits for the sponsor to address deficiencies in the application (“sponsor time”).3 CMS provides reimbursement for the majority of devices when they earn FDA approval. For a limited number of devices each year, however, CMS conducts a national coverage determination in response to external requests for validation or for devices that have limited or conflicting evidence of clinical benefit. This process averaged 8.6 months over the past 5 fiscal years.4 Although it is difficult to obtain data on how long private insurers take to make coverage decisions, anecdotal information from private insurers suggests that decisions are made within a few weeks to a few months after FDA approval, depending on the amount and quality of evidence of clinical benefit.

In Europe, by contrast, most of the 27 member countries of the European Union (EU) have publicly financed health care systems; such systems cover approximately four fifths of the populations of the four largest device markets. All EU countries require devices to first obtain a Conformité Européenne (CE) marking, which refers to a symbol shown on products that indicates market approval throughout the EU. The CE marking process is conducted by for-profit, third-party “notified bodies” that have been accredited by a member country to assess device safety and performance but do not evaluate effectiveness (which requires more clinical data). Although publicly available data are limited, anecdotal information from notified bodies suggests that the process takes 1 to 3 months, excluding sponsor time.

Most European patients do not have access to innovative, high-risk devices as soon as the devices receive a CE marking. Each country must first make a decision about reimbursement, a process that varies substantially among countries.5 Though a CE marking can be granted on the basis of fewer clinical data than are required for FDA approval, European standards for reimbursement are often similar to or higher than those that the FDA imposes for device approval. European countries may require additional data on the device’s safety and effectiveness, as well as on cost-effectiveness.

In France, a centralized body makes reimbursement decisions after assessing the safety and effectiveness of individual devices. Reimbursement decisions in Italy are devolved to the various regions, and Britain and Germany conduct broader assessments of device types or procedures, rather than of individual devices. Typically, innovative devices not covered under an existing diagnosis-related group (DRG) require review under the lengthier Health Technology Assessment process, which assesses safety, clinical benefit, and cost-effectiveness. Government-provided information on time to reimbursement varies by country. Estimated time frames are an average of 71.3 months in Germany, a range of 36.0 to 48.0 months in France, a range of 16.4 to 26.3 months in Italy, and an estimated 18 months in Britain.

Using this information, we determined that the time it takes to bring innovative, high-risk devices to patients in the United States is similar to or shorter than that in the top four European markets (seefigureComparison of Time to Market in Premarket Approval and Reimbursement Processes.). The public (CMS) process in the United States takes approximately as long as those in Italy and Britain, approximately half as long as that in France, and less than a third as long as that in Germany. The difference in time to market access is even greater when it comes to private insurers (covering the majority of the U.S. population), which often make reimbursement decisions within a few months after FDA approval.

To further illustrate this point, we compared the time to approval for five innovative, high-risk medical devices available in France, Italy, and the United States (see tableComparison of Time to Market Access for Five Innovative Devices in France, Italy, and the United States.). These case studies indicate that the average time to market access for these devices was 26.3 months in France, 30.8 months in Italy, and 15.3 months in the United States.

These numbers may not fully capture the reasons why a device reaches the market more quickly in one country than in another and do not reflect experiences with all innovative, high-risk devices. However, unless one uses equivalent standards in terms of the level of risk, the start and end points of the process, and the key end point of market access, accurate comparisons cannot be made.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

This article was published on August 1, 2012, at NEJM.org.


From the Office of Planning, Office of the Commissioner, Food and Drug Administration, White Oak, MD.

Read Full Post »

%d bloggers like this: