Feeds:
Posts
Comments

Posts Tagged ‘Assay’

Curators: Aviva Lev-Ari, PhD, RN and Larry Bernstein, MD, FACP

The essence of the message is summarized by Larry Bernstein, MD, FACP, as follows:

[1] we employ a massively parallel reporter assay (MPRA) to measure the transcriptional levels induced by 145bp DNA segments centered on evolutionarily-conserved regulatory motif instances and found in enhancer chromatin states
[2] We find statistically robust evidence that (1) scrambling, removing, or disrupting the predicted activator motifs abolishes enhancer function, while silent or motif-improving changes maintain enhancer activity; (2) evolutionary conservation, nucleosome exclusion, binding of other factors, and strength of the motif match are all associated with wild-type enhancer activity; (3) scrambling repressor motifs leads to aberrant reporter expression in cell lines where the enhancers are usually not active.
[3] Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale experimental manipulation, and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to generate and test predictive models of gene expression.

Manolis Kellis and co-authors from the Massachusetts Institute of Technology and the Broad Institute describe a massively parallel reporter assay that they used to systematically study regulatory motifs falling within thousands of predicted enhancer sequences in the human genome. Using this assay, they examined 2,104 potential enhancers in two human cell lines, along with another 3,314 engineered enhancer variants. “Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale experimental manipulation,” they write, “and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to generate and test predictive models of gene expression.”

SOURCE:

http://www.genomeweb.com//node/1206571?hq_e=el&hq_m=1536519&hq_l=4&hq_v=e1df6f3681

Systematic dissection of regulatory motifs in 2,000 predicted human enhancers using a massively parallel reporter assay

  1. Pouya Kheradpour1,
  2. Jason Ernst1,
  3. Alexandre Melnikov2,
  4. Peter Rogov2,
  5. Li Wang2,
  6. Xiaolan Zhang2,
  7. Jessica Alston2,
  8. Tarjei S Mikkelsen2 and
  9. Manolis Kellis1,3

+Author Affiliations


  1. 1 MIT;

  2. 2 Broad Institute
  1. * Corresponding author; email: manoli@mit.edu

Abstract

Genome-wide chromatin maps have permitted the systematic mapping of putative regulatory elements across multiple human cell types, revealing tens of thousands of candidate distal enhancer regions. However, until recently, their experimental dissection by directed regulatory motif disruption has remained unfeasible at the genome scale, due to the technological lag in large-scale DNA synthesis. Here, we employ a massively parallel reporter assay (MPRA) to measure the transcriptional levels induced by 145bp DNA segments centered on evolutionarily-conserved regulatory motif instances and found in enhancer chromatin states. We select five predicted activators (HNF1, HNF4, FOXA, GATA, NFE2L2) and two predicted repressors (GFI1, ZFP161) and measure reporter expression in erythroleukemia (K562) and liver carcinoma (HepG2) cell lines. We test 2,104 wild-type sequences and an additional 3,314 engineered enhancer variants containing targeted motif disruptions, each using 10 barcode tags in two cell lines and 2 replicates. The resulting data strongly confirm the enhancer activity and cell type specificity of enhancer chromatin states, the ability of 145bp segments to recapitulate both, the necessary role of regulatory motifs in enhancer function, and the complementary roles of activator and repressor motifs. We find statistically robust evidence that (1) scrambling, removing, or disrupting the predicted activator motifs abolishes enhancer function, while silent or motif-improving changes maintain enhancer activity; (2) evolutionary conservation, nucleosome exclusion, binding of other factors, and strength of the motif match are all associated with wild-type enhancer activity; (3) scrambling repressor motifs leads to aberrant reporter expression in cell lines where the enhancers are usually not active. Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale experimental manipulation, and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to generate and test predictive models of gene expression.

  • Received June 26, 2012.
  • Accepted March 14, 2013.

This manuscript is Open Access.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

SOURCE:

http://genome.cshlp.org/content/early/2013/03/19/gr.144899.112.abstract

Read Full Post »

%d bloggers like this: