Posts Tagged ‘Anterior interventricular branch of left coronary artery’

Comment by Cardiologists posted on LinkedIn’s

European Cardiovascular Medical Devices Group, a subgroup of Cardiovascular Medical Devices Group

on Stenting for Proximal LAD Lesions: In Reference to the Invasive Procedure performed on former President George W. Bush

UPDATED on 8/7/2018

Long-Term Outcomes of Stenting the Proximal LAD

Study Questions:

What are the outcomes of patients undergoing drug-eluting stent (DES) implantation according to lesion location within or outside the proximal left anterior descending (LAD) artery?


Among the 8,709 patients enrolled in PROTECT (Patient Related Outcomes With Endeavor Versus Cypher Stenting Trial), a multicenter percutaneous coronary intervention (PCI) trial, the investigators compared the outcomes of 2,534 patients (29.1%; 3,871 lesions [31.5%]) with stents implanted in the proximal LAD with 6,172 patients (70.9%; 8,419 lesions [68.5%]) with stents implanted outside the proximal LAD. For each event, a multivariate model was constructed that examined the effect of several individual baseline clinical and angiographic characteristics, including proximal LAD target lesion, on outcomes (i.e., MACE [major adverse cardiac events], target vessel failure [TVF], and myocardial infarction [MI]).


At 4-year follow-up, death rates were the same (5.8% vs. 5.8%; p > 0.999), but more MIs occurred in the proximal LAD group (6.2% vs. 4.9%; p = 0.015). The rates of clinically driven TVF (14.8% vs. 13.5%; p = 0.109), MACE (15.0% vs. 13.7%; hazard ratio, 1.1; 95% CI, 0.97-1.31; p = 0.139), and stent thrombosis (2.1% vs. 2.0%; p = 0.800) were similar. DES type had no interaction with MACE or TVF. In multivariate analysis, the proximal LAD was a predictor for MI (p = 0.038), but not for TVF (p = 0.149) or MACE (p = 0.069).


The authors concluded that proximal LAD location was associated with higher rates of MI during the long-term follow-up, but there were no differences in stent thrombosis, death, TVF, or overall MACE.


This post hoc analysis of a prospective, multicenter study reports no difference in the rates of death, MACE, or TVF at 4 years according to intervention at a proximal LAD or nonproximal LAD lesion. The occurrence of the predefined primary endpoint of stent thrombosis was also not dependent on whether a proximal LAD or nonproximal LAD site was treated. However, of note, stenting of proximal LAD lesions was associated with significantly higher rates of MI compared with stenting of nonproximal LAD lesions. Overall, these findings appear to suggest that proximal LAD lesions may not have additional risk in the contemporary DES era, but the higher risk of MI needs to be studied further. Future studies should compare longer-term clinical outcomes between proximal LAD PCI with DES and minimally invasive left internal mammary artery to LAD.




Stenting for Proximal LAD Lesions

Curator: Aviva Lev-Ari, PhD, RN

Michael Reinhardt • First, the media really should not be calling this “stent surgery” its a stent procedure just ask any post-CABG patient… Anyway it really is not possible to determine whether or not is was “unnecessary” without all the relevant patient data; which coronary vessel(s) involved, percent stenosis, etc. Actually I find it interesting that they apparently decided to stent the former president on the basis of a CT Angiogram which is not the standard of care for coronary imaging. I have to assume they performed an additional testing like a CT perfusion analysis and saw a clinically relevant defect and this support the decision to stent. Regarding the post-stent drugs cloplidigrel is not a benign drug but benefits far outweigh the downside of a sub-acute thrombosis which might result in a more serious future event = acute MI.

Rafael Beyar • This was absolutely an indicated procedure and almost all rational physician will treat a young patient with proximal LAD lesions with either a stent or bypass surgery

Dov V Shimon MD • No doubt! Proximal (‘close to origin’) LAD lesions are the leading “Widow makers”. Reestablishing of flow in the artery is saving from cardiac damage and death. Drug eluting stent have 2nd and 3rd generations with very low and acceptable reclosure rates and almost no abrupt closure (thrombosis). True, CTA is a screening test, but it astablishes the need for diagnostic and therapeutic angiogram. We, heart surgeons can provide long-term patency to the LAD using LIMA arterial bypass. The current advantage of stent is the incovenience and pain of surgery. Any responsible physician would opt the procedure even for himself, his relatives , his patients and for definitely for GW Bush.


Coronary anatomy and anomalies

On the left an overview of the coronary arteries in the anterior projection.

Coronary anatomy and anomalies

RCA, LAD and Cx in the anterior projection

On the left an overview of the coronary arteries in the lateral projection.

  • Left Main or left coronary artery (LCA)
    • Left anterior descending (LAD)
      • diagonal branches (D1, D2)
      • septal branches
    • Circumflex (Cx)
      • Marginal branches (M1,M2)
  • Right coronary artery
    • Acute marginal branch (AM)
    • AV node branch
    • Posterior descending artery (PDA)

Eur J Cardiothorac Surg. 2004 Apr;25(4):567-71.

Isolated high-grade lesion of the proximal LAD: a stent or off-pump LIMA?


Thoraxcentre, Groningen University Hospital, Groningen, The Netherlands.



The objective of this study was to compare the long-term outcome of patients with an isolated high-grade stenosis of the left anterior descending (LAD) coronary artery randomized to percutaneous transluminal coronary angioplasty with stenting (PCI, stenting) or to off-pump coronary artery bypass grafting (surgery).


Patients with an isolated high-grade stenosis (American College of Cardiology/American Heart Association classification type B2/C) of the proximal LAD were randomly assigned to stenting (n=51) or to surgery (n=51) and were followed for 3-5 years (mean 4 years). Primary composite endpoint was freedom from major adverse cardiac and cerebrovascular events (MACCEs), including cardiac death, myocardial infarction, stroke and repeat target vessel revascularization. Secondary endpoints were angina pectoris status and need for anti-anginal medication at follow-up. Analysis was by intention to treat.


MACCEs occurred in 27.5% after stenting and 9.8% after surgery (P=0.02; absolute risk reduction 17.7%). Freedom from angina pectoris was 67% after stenting and 85% after surgery (P=0.036). Need for anti-anginal medication was significantly lower after surgery compared to stenting (P=0.002).


Patients with an isolated high-grade lesion of the proximal LAD have a significantly better 4-year clinical outcome after off-pump coronary bypass grafting than after PCI.

Daily Dose

08/12/2013 | 5:48 PM

Was George Bush’s stent surgery really unnecessary?

By Deborah Kotz / Globe Staff


Ever since President George W. Bush had stent surgery last Tuesday to open a blocked artery, leading physicians who weren’t involved in his care have wondered publically why he had this “unnecessary” procedure. Large clinical trials have demonstrated that stent placement doesn’t extend lives or prevent a future heart attack or stroke in those with stable heart disease.

What’s more, Bush could wind up with complications like a reblockage where the stent was placed or excessive bruising or internal bleeding from the blood thinners that he must take likely for the next year.

Dr Richard Besser, the chief medical correspondent for ABC News, questioned why Bush had an exercise stress test as part of his routine physical exam given that he had no symptoms like chest pain or shortness of breath. The stress test indicated signs of an artery blockage.

“In people who are not having symptoms, the American Heart Association says you should not do a stress test,” Besser said, “since the value of opening that artery is to relieve the symptoms.”

Cleveland Clinic cardiologist Dr. Steve Nissen agreed in his interview with USA Today. Bush, he said, likely “got the classical thing that happens to VIP patients, when they get so-called executive physicals and they get a lot of tests that aren’t indicated. This is American medicine at its worst.”

Two physicians wrote in an Washington Post op-ed column titled “President Bush’s unnecessary surgery” that they worry that the media coverage of Bush’s stent will lead “patients to pressure their own doctors for unwarranted and excessive care.”

But none of these doctors actually treated Bush or examined his medical records, so I’m a little surprised they’re making such firm calls.

Bush, an avid biker who recently completed a 100-kilometer ride, probably shouldn’t have had the exercise stress test if he wasn’t having any heart symptoms. “Routine stress testing used to be done 20 years ago, but isn’t recommended any longer since it doesn’t have any benefit,” said Brigham and Women’s cardiologist Dr. Christopher Cannon.

But Bush’s spokesman insisted the stent was necessary after followup heart imaging via a CT angiogram “confirmed a blockage that required opening.”

Cannon said Bush’s doctors may have seen signs that blood flow wasn’t getting to a significant part of the heart muscle, a condition known as ischemia. Researchers have found that those with moderate to severe ischemia appear to experience a reduction in fatal heart attacks when they have a stent placement along with medical therapy, rather than just taking medications alone. (Larger studies, though, are needed to confirm this finding.)

“If a blockage occurs at the very start of the artery and it’s extensive—95 percent blocked—then chances are it will cause significant ischemia,” Cannon said. While severe ischemia usually causes light-headedness or dizziness during exercise, Bush may have had more moderate ischemia that didn’t cause such symptoms.

It’s impossible to know for certain, he added, without seeing his medical records firsthand.


President Bush’s unnecessary heart surgery

  • By Vinay Prasad and Adam Cifu, Published: August 9

Vinay Prasad is chief fellow of medical oncology at the National Cancer Institute and the National Institutes of Health. Adam Cifu is a professor of medicine at the University of Chicago.

Former president George W. Bush, widely regarded as a model of physical fitness, received a coronary artery stent on Tuesday. Few facts are known about the case, but what is known suggests the procedure was unnecessary.

Before he underwent his annual physical, Mr. Bush reportedly had no symptoms. Quite the opposite: His exercise tolerance was astonishing for his age, 67. He rode more than 30 miles in the heat on a bike ride for veterans injured in the wars in Iraq and Afghanistan.

If Mr. Bush had visited a general internist practicing sound, evidence-based care, he would not have had cardiac testing. Instead, the doctor would have had conducted age-appropriate cancer screening. For the former president, this would include only colon cancer screening. It no longer would include even prostate-specific antigen testing for cancer. The doctor would have screened for cholesterol, checked for hypertension and made sure the patient was up to date on age-appropriate vaccinations, including those for pneumococcal pneumonia and shingles. Presumably Mr. Bush got these things, and he got the cardiac test as well.What value does a stress test add for an otherwise healthy 67-year-old?No study has shown that this examination improves outcomes. The trials that have been done for so-called routine stress testing examined higher-risk patients. They found that performing stress tests on people at high risk of cardiovascular disease may detect blockages but does not improve symptoms or survival. Routine stress testing does, however, increase the use of procedures such as coronary stenting.Unfortunately, Mr. Bush, like many VIPs, may be paying the price of these in-depth investigations. His stress test revealed an abnormality, prompting another test: a CT angiogram. This study showed a blockage, which was stented open during an invasive procedure. It is worth noting that at least two large randomized trials show that stenting these sorts of lesions does not improve survival. Because Mr. Bush had no symptoms, it is impossible that he felt better after these procedures.

Instead, George W. Bush will have to take two blood thinners, aspirin and Plavix, for at least a month and probably a year. (The amount of time a blood thinner is needed depends on the type of stent placed). While he takes these medications, he will have a higher risk of bleeding complications with no real benefit.

Although this may seem like an issue important only to the former president, consider the following: Although the price of excessive screening of so-called VIPs is usually paid for privately, follow-up tests, only “necessary” because of the initial unnecessary screening test, are usually paid for by Medicare, further stressing our health-care system. The media coverage of interventions like Mr. Bush’s also leads patients to pressure their own doctors for unwarranted and excessive care.


Read Full Post »

Normal and Anomalous Coronary Arteries: Dual Source CT in Cardiothoracic Imaging

Reporters: Justin D Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

Coronary anatomy and anomalies

“Coronary” describes the crown-like position of arteries on the heart that provide its nutrient blood supply. The heart does not live off of the blood in its chambers, but rather receives its nutrient perfusion from branches of the aorta, like all other organs. The most relied on method to exam coronary artery anatomy is angiography – xray image movies obtained while the blood is opacified by injection of iodine (high atomic number to block xrays) to provide a contrast between arterial flow channel (the lumen) and the surrounding tissues. Computed tomography is providing a second-best alternative with 3D reconstructions that can be obtained less invasively (no catheters), but it often fails to see the posterior descending artery (PDA) well, and is lower in resolution (point-discrimination detail) than xray angiography (XRA). Magnetic resonance angiography (MRA) comes in as a distant third place method for examining coronary anatomy (lower quality, lower reliability), but non-invasive with no ionizing radiation. A major goal of defining coronary anatomy in individual patients is to identify coronary artery disease (CAD) and to clarify best options for management – to relieve angina and to avoid adverse consequences, e.g., heart attacks (myocardial infarction), heart failure (CHF) and death. The COURAGE trial showed that for many, aggressive medical management with statins and blood pressure control may obviate need for percutaneous or surgical interventions to control angina and minimize the risk of adverse outcomes. Patients with blockage of the left main coronary artery, or two vessel blockage including proximal left anterior descending (LAD) especially with below normal ejection fraction may be better off in the long run with bypass surgery. Therefore less invasive imaging sufficient to rule out left main disease and proximal LAD disease may suffice for decision making (except that the BARI trial results have not been overturned in favoring bypass surgery for diabetics).

On the left an overview of the coronary arteries in the anterior projection.

Coronary anatomy and anomalies

  • Left Main or left coronary artery (LCA)
    • Left anterior descending (LAD)
      • diagonal branches (D1, D2)
      • septal branches
    • Circumflex (Cx)
      • Marginal branches (M1,M2)
  • Right coronary artery
    • Acute marginal branch (AM)
    • AV node branch
    • Posterior descending artery (PDA)
RCA, LAD and Cx in the anterior projection

On the left an overview of the coronary arteries in the lateral projection.

  • Left Main or left coronary artery (LCA)
    • Left anterior descending (LAD)
      • diagonal branches (D1, D2)
      • septal branches
    • Circumflex (Cx)
      • Marginal branches (M1,M2)
  • Right coronary artery
    • Acute marginal branch (AM)
    • AV node branch
    • Posterior descending artery (PDA)

RCA, LAD and Cx in the right anterior oblique projection
On the left an overview of the coronary arteries in the lateral projection.

  • Left Main or left coronary artery (LCA)
    • Left anterior descending (LAD)
      • diagonal branches (D1, D2)
      • septal branches
    • Circumflex (Cx)
      • Marginal branches (M1,M2)
  • Right coronary artery
    • Acute marginal branch (AM)
    • AV node branch
    • Posterior descending artery (PDA)

RCA, LAD and Cx in the lateral projection

Left Coronary Artery (LCA)

The left coronary artery (LCA) is also known as the left main.
The LCA arises from the left coronary cusp.

The aortic valve has three leaflets, each having a cusp or cup-like configuration.
These are known as the left coronary cusp (L), the right coronary cusp (R) and the posterior non-coronary cusp (N).
Just above the aortic valves there are anatomic dilations of the ascending aorta, also known as the sinus of Valsalva. The left aortic sinus gives rise to the left coronary artery.
The right aortic sinus which lies anteriorly, gives rise to the right coronary artery.
The non-coronary sinus is postioned on the right side.

Left coronary (LC), right coronary (RC) and posterior non-coronary (NC) cusp
The LCA divides almost immediately into the circumflex artery (Cx) and left anterior descending artery (LAD).
On the left an axial CT-image.
The LCA travels between the right ventricle outflow tract anteriorly and the left atrium posteriorly and divides into LAD and Cx.

On the image on the left we see the left main artery dividing into

  • Cx with obtuse marginal branch (OM)
  • LAD with diagonal branches (DB)

On volume rendered images the left atrial appendage needs to be removed to get a good look on the LCA.
In 15% of cases a third branch arises in between the LAD and the Cx, known as the ramus intermedius or intermediate branch.
This intermediate branche behaves as a diagonal branch of the Cx.
Left Anterior Descending (LAD)
The LAD travels in the anterior interventricular groove and continues up to the apex of the heart.
The LAD supplies the anterior part of the septum with septal branches and the anterior wall of the left ventricle with diagonal branches.
The LAD supplies most of the left ventricle and also the AV-bundle.Mnemonic: Diagonal branches arise from the LAD.

CT image of the LAD in RAO projection
The diagonal branches come off the LAD and run laterally to supply the antero-lateral wall of the left ventricle.
The first diagonal branch serves as the boundary between the proximal and mid portion of the LAD (2).
There can be one or more diagonal branches: D1, D2 , etc.
Circumflex (Cx)
The Cx lies in the left AV groove between the left atrium and left ventricle and supplies the vessels of the lateral wall of the left ventricle.
These vessels are known as obtuse marginals (M1, M2…), because they supply the lateral margin of the left ventricle and branch off with an obtuse angle.
In most cases the Cx ends as an obtuse marginal branch, but 10% of patients have a left dominant circulation in which the Cx also supplies the posterior descending artery (PDA).Mnemonic: Marginal branches arise from the Cx and supply the lateral Margin of the left ventricle.

Circumflex and LAD seen in Lateral projection
Right Coronary Artery (RCA)
The right coronary artery arises from the anterior sinus of Valsalva and courses through the right atrioventricular (AV) groove between the right artium and right ventricle to the inferior part of the septum.
In 50-60% the first branch of the RCA is the small conus branch, that supplies the right ventricle outflow tract.
In 20-30% the conus branch arises directly from the aorta.
In 60% a sinus node artery arises as second branch of the RCA, that runs posteriorly to the SA-node (in 40% it originates from the Cx).
The next branches are some diagonals that run anteriorly to supply the anterior wall of the right ventricle.
The large acute marginal branch (AM) comes off with anacute angle and runs along the margin of the right ventricle above the diaphragm.
The RCA continues in the AV groove posteriorly and gives off a branch to the AV node.
In 65% of cases the posterior descending artery (PDA) is a branch of the RCA (right dominant circulation).
The PDA supplies the inferior wall of the left ventricle and inferior part of the septum.
RCA, LAD and LCx in Anterior projection
On the image on the far left we see the most common situation, in which the RCA comes off the right cusp and will provide the conus branch at a lower level (not shown).
On the image next to it, we see a conus branch, that comes off directly from the aorta.
LEFT: RCA comes off the right sinus of Valsalva
RIGHT: Conus artery comes off directly from the aorta
The large acute marginal branch (AM) supplies the lateral wall of the right ventricle.
In this case there is a right dominant circulation, because the posterior descending artery (PDA) comes off the RCA.
Coronary Anomalies

Coronary anomalies are uncommon with a prevalence of 1%.
Early detection and evaluation of coronary artery anomalies is essential because of their potential association with myocardial ischemia and sudden death (3).
With the increased use of cardiac-CT, we will see these anomalies more frequently.

Coronary anomalies can be differentiated into anomalies of the origin, the course and termination (Table).

The illustration in the left upper corner is the most common and clinically significant anomaly.
There is an anomalous origin of the LCA from the right sinus of Valsalva and the LCA courses between the aorta and pulmonary artery.
This interarterial course can lead to compression of the LCA (yellow arrows) resulting in myocardial ischemia.

The other anomalies in the figure on the left are not hemodynamically significant.

Interarterial LCA

On the left images of a patient with an anomalous origin of the LCA from the right sinus of Valsalva and coursing between the aorta and pulmonary artery.
Sudden death is frequently observed in these patients.


On the left images of a patient with an anomalous origin of the LCA from the pulmonary artery, also known as ALCAPA.
ALCAPA results in the left ventricular myocardium being perfused by relatively desaturated blood under low pressure, leading to myocardial ischemia.
ALCAPA is a rare, congenital cardiac anomaly accounting for approximately 0.25-0.5% of all congenital heart diseases.
Approximately 85% of patients present with clinical symptoms of CHF within the first 1-2 months of life.

Myocardial bridging

Myocardial bridging is most commonly observed of the LAD (figure).
The depth of the vessel under the myocardium is more important that the lenght of the myocardial bridging.
There is debate, whether some of these myocardial bridges are hemodynamically significant.


On the image on the left we see a large LAD giving rise to a large septal branch that terminates in the right ventricle (blue arrow).

Left to right shunt: septal branch of LAD teminates in right ventricle
  1. Introduction to cardiothoracic imaging
    by Carl Jaffe and Patrick J. Lynch
  2. Cardiology Site
    by M. Abdulla
    This site includes instructional movies, 3-D animation, panoramic views, online quiz, interactive video-clips, interactive heart sounds & murmurs and interactive echocardiograms.
  3. Visualization of Anomalous Coronary Arteries on Dual Source Computed Tomography
    by G.J. de Jonge et al
    European Radiology, Volume 18, Number 11 / November, 2008, 2425-2432


Robin Smithuis and Tineke Wilems
Radiology department of the Rijnland Hospital Leiderdorp and the University Medical Centre Groningen, the Netherlands.


Read Full Post »