EARLY DETECTION OF PROSTATE CANCER: AUA GUIDELINE
Author-Writer: Dror Nir, PhD
When reviewing the DETECTION OF PROSTATE CANCER section on the AUA website , The first thing that catches one’s attention is the image below; clearly showing two “guys” exploring with interest what could be a CT or MRI image…..
But, if you bother to read the review underneath this image regarding EARLY DETECTION OF PROSTATE CANCER: AUA GUIDELINE produced by an independent group that was commissioned by the AUA to conduct a systematic review and meta-analysis of the published literature on prostate cancer detection and screening; Panel Members: H. Ballentine Carter, Peter C. Albertsen, Michael J. Barry, Ruth Etzioni, Stephen J. Freedland, Kirsten Lynn Greene, Lars Holmberg, Philip Kantoff, Badrinath R. Konety, Mohammad Hassan Murad, David F. Penson and Anthony L. Zietman – You are bound to be left with a strong feeling that something is wrong!
The above mentioned literature review was done using rigorous approach.
“The AUA commissioned an independent group to conduct a systematic review and meta-analysis of the published literature on prostate cancer detection and screening. The protocol of the systematic review was developed a priori by the expert panel. The search strategy was developed and executed
by reference librarians and methodologists and spanned across multiple databases including Ovid Medline In-Process & Other Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Ovid Cochrane Database of Systematic Reviews, Ovid Cochrane Central Register of Controlled Trials and Scopus. Controlled vocabulary supplemented with keywords was used to search for the relevant concepts of prostate cancer, screening and detection. The search focused on DRE, serum biomarkers (PSA, PSA Isoforms, PSA kinetics, free PSA, complexed PSA, proPSA, prostate health index, PSA velocity, PSA
doubling time), urine biomarkers (PCA3, TMPRSS2:ERG fusion), imaging (TRUS, MRI, MRS, MR-TRUS fusion), genetics (SNPs), shared-decision making and prostate biopsy. The expert panel manually identified additional references that met the same search criteria”
While reading through the document, I was looking for the findings related to the roll of imaging in prostate cancer screening; see highlighted above. The only thing I found: “With the exception of prostate-specific antigen (PSA)-based prostate cancer screening, there was minimal evidence to assess the outcomes of interest for other tests.”
This must mean that: Notwithstanding hundreds of men-years and tens of millions of dollars which were invested in studies aiming to assess the contribution of imaging to prostate cancer management, no convincing evidence to include imaging in the screening progress was found by a group of top-experts in a thorough and rigorously managed literature survey! And it actually lead the AUA to declare that “Nothing new in the last 20 years”…..
My interpretation of this: It says-it-all on the quality of the clinical studies that were conducted during these years, aiming to develop an improved prostate cancer workflow based on imaging. I hope that whoever reads this post will agree that this is a point worth considering!
For those who do not want to bother reading the whole AUA guidelines document here is a peer reviewed summary:
“Early Detection of Prostate Cancer: AUA Guideline; Carter HB, Albertsen PC, Barry MJ, Etzioni R, Freedland SJ, Greene KL, Holmberg L, Kantoff P, Konety BR, Murad MH, Penson DF, Zietman AL; Journal of Urology (May 2013)”
It says:
“A systematic review was conducted and summarized evidence derived from over 300 studies that addressed the predefined outcomes of interest (prostate cancer incidence/mortality, quality of life, diagnostic accuracy and harms of testing). In addition to the quality of evidence, the panel considered values and preferences expressed in a clinical setting (patient-physician dyad) rather than having a public health perspective. Guideline statements were organized by age group in years (age<40; 40 to 54; 55 to 69; ≥70).
RESULTS: With the exception of prostate-specific antigen (PSA)-based prostate cancer screening, there was minimal evidence to assess the outcomes of interest for other tests. The quality of evidence for the benefits of screening was moderate, and evidence for harm was high for men age 55 to 69 years. For men outside this age range, evidence was lacking for benefit, but the harms of screening, including over diagnosis and over treatment, remained. Modeled data suggested that a screening interval of two years or more may be preferred to reduce the harms of screening.
CONCLUSIONS: The Panel recommended shared decision-making for men age 55 to 69 years considering PSA-based screening, a target age group for whom benefits may outweigh harms. Outside this age range, PSA-based screening as a routine could not be recommended based on the available evidence. The entire guideline is available at www.AUAnet.org/education/guidelines/prostate-cancer-detection.cfm.”
Other research papers related to the management of Prostate cancer were published on this Scientific Web site:
Imaging-biomarkers is Imaging-based tissue characterization
On the road to improve prostate biopsy
State of the art in oncologic imaging of Prostate
Imaging agent to detect Prostate cancer-now a reality
Scientists use natural agents for prostate cancer bone metastasis treatment
Today’s fundamental challenge in Prostate cancer screening
ROLE OF VIRAL INFECTION IN PROSTATE CANCER
Men With Prostate Cancer More Likely to Die from Other Causes
New Prostate Cancer Screening Guidelines Face a Tough Sell, Study Suggests
New clinical results supports Imaging-guidance for targeted prostate biopsy
Prostate Cancer: Androgen-driven “Pathomechanism” in Early-onset Forms of the Disease
Prostate Cancer and Nanotecnology
Prostate Cancer Cells: Histone Deacetylase Inhibitors Induce Epithelial-to-Mesenchymal Transition
Imaging agent to detect Prostate cancer-now a reality
Scientists use natural agents for prostate cancer bone metastasis treatment
ROLE OF VIRAL INFECTION IN PROSTATE CANCER
Prostate Cancers Plunged After USPSTF Guidance, Will It Happen Again?
[…] EARLY DETECTION OF PROSTATE CANCER: AUA GUIDELINE. […]
Genomically Guided Treatment after CLIA Approval: to be offered by Weill Cornell Precision Medicine Institute
February 6, 2013 by 2012pharmaceutical | Edit
4 Votes
Curator: Aviva Lev-Ari, PhD, RN
New Institute for Precision Medicine Created at Weill Cornell Medical College and NewYork-Presbyterian Hospital
DR. MARK RUBIN, LEADING PROSTATE CANCER AND GENOMICS EXPERT, TO LEAD CUTTING-EDGE CENTER FOR TARGETED, INDIVIDUALIZED PATIENT CARE BASED ON EACH PATIENT’S GENETICS
NEW YORK (Jan. 31, 2013) — Recognizing that medicine is not “one size fits all,” Weill Cornell Medical College and NewYork-Presbyterian Hospital have created the pioneering Institute for Precision Medicine at Weill Cornell and NewYork-Presbyterian/Weill Cornell Medical Center. This new, cutting-edge translational medicine research hub will explore the new frontier of precision medicine, offering optimal targeted, individualized treatment based on each patient’s genetic profile. The institute’s new genomic research discoveries will help develop novel, personalized medical therapies to be tested in innovative clinical trials, while also building a comprehensive biobank to improve research and patient care.
Dr. Mark Rubin
The Institute for Precision Medicine will be led by Dr. Mark Rubin, a renowned pathologist and prostate cancer expert who uses whole genomic sequencing in his laboratory to investigate DNA mutations that lead to disease, particularly prostate cancer. Dr. Rubin currently serves as vice chair for experimental pathology, director of Translational Research Laboratory Services, the Homer T. Hirst III Professor of Oncology, professor of pathology and laboratory medicine and professor of pathology in urology at Weill Cornell and is a pathologist at NewYork-Presbyterian/Weill Cornell.
Dr. Rubin and his team seek to replace the traditional one-size-fits-all medicine paradigm with one that focuses on targeted, individualized patient care using a patient’s own genetic profile and medical history. Physician-scientists at the institute will seek to precisely identify the genetic influencers of a patient’s specific illness — such as cancer, cardiovascular disease, neurodegenerative disease and others — and use this genetic information to design a more-effective course of treatment that targets those specific contributing factors. Also, genomic analyses of tumor tissue will enable researchers to help patients with advanced disease and no current treatment options, as well as to isolate the causes of drug resistance in patients who stop responding to treatments, redirecting them to more successful therapies.
Preventive precision medicine will also be a key initiative at the institute, allowing physician-scientists to help identify a patient’s risk of diseases and take necessary steps to aid in its prevention through medical treatment and/or lifestyle modification. In addition, the Institute for Precision Medicine will leverage an arsenal of innovative genomic sequencing, biobanking and bioinformatics technology to transform the existing paradigm for diagnosing and treating patients.
“This institute will revolutionize the way we treat disease, linking cutting-edge research and next-generation sequencing in the laboratory to the patient’s bedside,” Dr. Rubin says. “We will use advanced technology and the collective wealth of knowledge from our clinicians, basic scientists, pathologists, molecular biologists and computational biologists to pinpoint the molecular underpinnings of disease — information that will spur the discovery of novel treatments and therapies. It’s an exciting time to be involved in precision medicine and I look forward to advancing this game-changing field of medicine.”
“Precision medicine is the future of medicine, and its application will help countless patients,” says Dr. Laurie H. Glimcher, the Stephen and Suzanne Weiss Dean of Weill Cornell Medical College. “The Institute for Precision Medicine, with Dr. Rubin’s expertise and strong leadership, will accelerate our understanding of the human genome, provide key insights into the causes of disease and enable our physician-scientists to translate this knowledge from the lab to the clinical setting to help deliver personalized treatments to the sickest of our patients.”
Three main resources will facilitate the institute’s groundbreaking precision medicine work:
genomics sequencing,
biobanking and
bioinformatics.
Weill Cornell and NewYork-Presbyterian will invest in state-of-the-art technology to conduct sequencing, a more expansive biobank for all patient specimens and tissue samples and dedicated bioinformaticians who will closely analyze patient data, searching for genetic mutations and other abnormalities to identify and target with treatment.
“The Institute for Precision Medicine will enable our doctors to tailor effective treatments for individual patients and also predict the diseases that are likely to affect a patient long before they develop,” says Dr. Steven J. Corwin, CEO of NewYork-Presbyterian Hospital. “By harnessing the full potential of our enhanced understanding of the human genome, and extending its reach into the clinical realm, the institute will transform patient care at NewYork-Presbyterian/Weill Cornell Medical Center and beyond.”
Dr. Rubin, the institute’s inaugural director, is a board-certified pathologist and physician-scientist with specific expertise in genitourinary pathology and an internationally recognized leader in prostate cancer genomics and biomarker research. His groundbreaking research investigating molecular biomarkers distinguishing indolent from aggressive disease has led to landmark discoveries that revolutionized the understanding of prostate cancer’s molecular underpinnings. This includes co-discovering two of the most common mutations in prostate cancer,
the TMPRSS2-ETS rearrangements and
SPOP mutations.
Dr. Rubin is one of the “Dream Team” principal investigators of a multi-institutional $10 million grant from Stand Up 2 Cancer (SU2C) and the Prostate Cancer Foundation, addressing patients with advanced prostate cancer through a multi-phase approach employing next generation sequencing to help inform the direction of future clinical trials. Additionally, Dr. Rubin serves as a co-principal investigator on the National Cancer Institute‘s (NCI) Early Detection Research Network (EDRN) Biomarker Discovery Laboratory and worked for many years as part of the NCI Prostate Cancer Specialized Programs of Research Excellence (SPORE).
Dr. Rubin has authored more than 275 peer-reviewed publications, predominantly in prostate cancer, and holds multiple NCI-funded grants in prostate cancer genomics and biomarker development. He is a member of the World Health Organization Prostate Cancer Tumor Classification and the Prostate TCGA (The Cancer Genome Atlas) Working Group. He serves as an ad hoc reviewer for multiple publications including Nature, Science, Cancer Cell, Cancer Discovery and the New England Journal of Medicine. Dr. Rubin also serves as the chair of the EDRN Prostate Cancer Working Group and is a member of the ERDN Steering Committee. He is active in the NCI/NHGRI-sponsored TCGA serving on the Prostate Cancer Working Group and he is an external advisor for the Canadian International Cancer Genome Consortium (ICGC). He served on the NCI Cancer Biomarker Study Section for five years and as an ad hoc reviewer for other NCI and international granting organizations.
Dr. Rubin is the recipient of the Arthur Purdy Stout Society of Surgical Pathologists Annual Prize (2003), the Young Investigator Award (2004) given by the United States and Canadian Academy of Pathology and the Huggins Medal (2012), the highest award bestowed by the Society of Urologic Oncology. Finally, Dr. Rubin was a co-team leader with his long-term collaborator, Arul M. Chinnaiyan (University of Michigan) for the first annual American Association of Cancer Research Team Science Award (2007) in recognition for their groundbreaking work on TMPRSS2-ETS fusion prostate cancer.
SOURCE:
http://weill.cornell.edu/news/releases/wcmc/wcmc_2013/01_31a_13.shtml
That’s the way to go…one question: how much it cost, is it available for every patient?
Dror Nir, PhD
Managing partner
BE: +32 (0) 473 981896
UK: +44 (0) 2032392424
web: http://www.radbee.com/
blogs: http://radbee.wordpress.com/ ; http://www.MedDevOnIce.com
Dr. Nir,
Please convert the blue to green for uniformity with our style,
If ObamaCare will win, a universal healthcare system will provide ubiquitous access. At present time, What insurance covers will be the reinbursement, most are 80% covered, x millions do not have insurance. In Massachusetts MassHealth is for the poor, most likely will not cover that,
[…] « Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline […]
[…] https://pharmaceuticalintelligence.com/2013/05/21/early-detection-of-prostate-cancer-aua-guideline/ […]
[…] EARLY DETECTION OF PROSTATE CANCER: American Urological Association (AUA) GUIDELINE (pharmaceuticalintelligence.com) […]
[…] Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline […]
[…] Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline […]