Feeds:
Posts
Comments

Posts Tagged ‘Alzheimer’

A recent study by researchers at Case Western Reserve University is likely to promise a new life to Alzheimer’s victims and their loved ones.

Alzheimer’s disease (AD) is associated with impaired clearance of β-amyloid (Aβ) from the brain, a process normally facilitated by apolipoprotein E (apoE). Oral administration of the retinoid X receptors (RXRs) agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble within hours in an apoE-dependent manner. Aβ plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function.

Thus, researchers hope and believe that, RXR activation stimulates physiological Aβ clearance mechanisms, resulting in the rapid reversal of a broad range of Aβ-induced deficits in humans as well.

Bexarotene has been approved for the treatment of cancer by the U.S. Food and Drug Administration for more than a decade. It has a good safety and side-effect profile, which researchers hope will help speed the transition to clinical trials of the drug.

source

Reported by: Dr. V. S. Karra, Ph.D

Read Full Post »

Enzymes act on the APP (Amyloid precursor prot...

Enzymes act on the APP (Amyloid precursor protein) and cut it into fragments of protein, one of which is called beta-amyloid and its crucial in the formation of senile plaques in Alzheimer (Photo credit: Wikipedia)

C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by γ-secretase to release  the amyloid-β polypeptides, which are associated with Alzheimer’s disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded “N-helix” followed by a short “N-loop” connecting to the transmembrane domain (TMD). The TMD is a flexibly curved α helix, making it well suited for processive cleavage by γ-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer’s therapeutics.

Source

Reported by: Dr. V. S. Karra, Ph.D

Read Full Post »

« Newer Posts