Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘adaptiaton’


The Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

phylogenetics

phylogenetics

http://upload.wikimedia.org/wikipedia/commons/thumb/1/12/CollapsedtreeLabels-simplified.svg/200px-CollapsedtreeLabels-simplified.svg.png

 

This discussion that completes and is an epicrisis (summary and critical evaluation) of the series of discussions that preceded it.

  1. Innervation of Heart and Heart Rate
  2. Action of hormones on the circulation
  3. Allogeneic Transfusion Reactions
  4. Graft-versus Host reaction
  5. Unique problems of perinatal period
  6. High altitude sickness
  7. Deep water adaptation
  8. Heart-Lung-and Kidney
  9. Acute Lung Injury

The concept inherent in this series is that the genetic code is an imprint that is translated into a message.  It is much the same as a blueprint, or a darkroom photographic image that has to be converted to a print. It is biologically an innovation of evolutionary nature because it establishes a simple and reproducible standard for the transcription of the message through the transcription of the message using strings of nucleotides (oligonucleotides) that systematically transfer the message through ribonucleotides that communicate in the cytoplasm with the cytoskeleton based endoplasmic reticulum (ER), composing a primary amino acid sequence.  This process is a quite simple and convenient method of biological activity.  However, the simplicity ends at this step.  The metabolic components of the cell are organelles consisting of lipoprotein membranes and a cytosol which have particularly aligned active proteins, as in the inner membrane of the mitochondrion, or as in the liposome or phagosome, or the structure of the  ER, each of which is critical for energy transduction and respiration, in particular, for the mitochondria, cellular remodeling or cell death, with respect to the phagosome, and construction of proteins with respect to the ER, and anaerobic glycolysis and the hexose monophosphate shunt in the cytoplasmic domain.  All of this refers to structure and function, not to leave out the membrane assigned transport of inorganic, and organic ions (electrolytes and metabolites).

I have identified a specific role of the ER, the organelles, and cellular transactions within and between cells that is orchestrated.  But what I have outlined is a somewhat limited and rigid model that does not reach into the dynamics of cellular transactions.  The DNA has expression that may be old, no longer used messages, and this is perhaps only part of a significant portion of “dark matter”.  There is also nuclear DNA that is enmeshed with protein, mRNA that is a copy of DNA, and mDNA  is copied to ribosomal RNA (rRNA).  There is also rDNA. The classic model is DNA to RNA to protein.  However, there is also noncoding RNA, which plays an important role in regulation of transcription.

This has been discussed in other articles.  But the important point is that proteins have secondary structure through disulfide bonds, which is determined by position of sulfur amino acids, and by van der Waal forces, attraction and repulsion. They have tertiary structure, which is critical for 3-D structure.  When like subunits associate, or dissimilar oligomers, then you have heterodimers and oligomers.  These constructs that have emerged over time interact with metabolites within the cell, and also have an important interaction with the extracellular environment.

When you take this into consideration then a more complete picture emerges. The primitive cell or the multicellular organism lives in an environment that has the following characteristics – air composition, water and salinity, natural habitat, temperature, exposure to radiation, availability of nutrients, and exposure to chemical toxins or to predators.  In addition, there is a time dimension that proceeds from embryonic stage to birth in mammals, a rapid growth phase, a tapering, and a decline.  The time span is determined by body size, fluidity of adaptation, and environmental factors.  This is covered in great detail in this work.  The last two pieces are in the writing stage that completes the series. Much content has already be presented in previous articles.

The function of the heart, kidneys and metabolism of stressful conditions have already been extensively covered in http://pharmaceuticalintelligence.com  in the following and more:

The Amazing Structure and Adaptive Functioning of the Kidneys: Nitric Oxide – Part I

https://pharmaceuticalintelligence.com/2012/11/26/the-amazing-structure-and-adaptive-functioning-of-the-kidneys/

Nitric Oxide and iNOS have Key Roles in Kidney Diseases – Part II

https://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-and-inos-have-key-roles-in-kidney-diseases/

The pathological role of IL-18Rα in renal ischemia/reperfusion injury – Nature.com

https://pharmaceuticalintelligence.com/2014/10/24/the-pathological-role-of-il-18r%CE%B1-in-renal-ischemiareperfusion-injury-nature-com/

Summary, Metabolic Pathways

https://pharmaceuticalintelligence.com/2014/10/23/summary-metabolic-pathways/

 

Advertisements

Read Full Post »