Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
W. Gerald “Jerry” Austen, MD influential in the design and creation of a cardiopulmonary (heart-lung) bypass machine and the intra-aortic balloon pump at MGH as renowned cardiac surgeon
Curator and reporter: Aviva Lev-Ari, PhD, RN
This article is classified in the ontology of LPBI Group’s Journal PharmaceuticalIntelligence.com under the Category of Research
Interviews with Scientific Leaders
This category includes 300 articles. LPBI Group’s will publish in July 2023 its Library of Audio Podcasts on “Interviews with Scientific Leaders.”
The presentations in the video below, about W. Gerald “Jerry” Austen, MD contributions to cardiac surgery are considered to be testimonials as well as qualify as “Interviews with a Scientific Leader” in the domains of cardiac surgery and cardiac repair medical devices with a special focus on:
cardiopulmonary (heart-lung) bypass machine, and
the intra-aortic balloon pump
On these two domains, LPBI Group had published extensively as the sources cited, below: Articles, e-Books in English and Spanish and Chapters in these book on the very specialty of Dr. Austen as included in the title of this article.
Recently, Mass General celebrated the life and legacy of W. Gerald “Jerry” Austen, MD — a renowned cardiac surgeon, beloved family man and visionary leader.
SOURCE
In Memoriam: W. Gerald Austen, MD – Mass General Giving
For 70 years, Dr. Austen was part of the Mass General community, having completed his residency at the hospital and continuing to become one of the most distinguished and well-regarded physicians in the hospital’s more than 200-year history. At 39 years old, he was named Mass General’s chief of surgical services — a position he held for nearly 29 years. Under his leadership, the Department of Surgery became one of the greatest academic departments of surgery in the country. Among his many contributions, he was influential in the design and creation of a cardiopulmonary (heart-lung) bypass machine and the intra-aortic balloon pump.
Hundreds of Dr. Austen’s closest friends, colleagues and family members gathered at Boston Symphony Hall to commemorate his legacy. A variety of speakers — from current Mass General President David F. M. Brown, MD, to former hospital President Peter Slavin, MD, and retired Chairman, President and CEO of Abiomed Mike Minogue — shared fond memories of Dr. Austen, further illustrating his unmatched and lasting impact on others.
The Mass General community will continue to mourn the loss of such a giant in the medical world and will carry on Dr. Austen’s legacy through compassionate care and an unparalleled commitment to all patients.
Susan Hockfield, ex-President of MIT delivered a speech about mechanical engineering and biomedicine, medical devices and cardiac repair devices. How proud Dr. Austen was about his MIT education and functions he fulfilled for this institutions and others.
Other related contributions on the specialty of Dr.W. Gerald “Jerry” Austen, MD – cardiac surgery are covered in e-books and articles on this Open Access Online Scientific Journal, include the following:
Articles
319 articles in the Cardiac and Cardiovascular Surgical Procedures Category
98 articles in the Aortic Valve Category
Among patients with aortic stenosis who were at intermediate surgical risk, there was no significant difference in the incidence of death or disabling stroke at 5 years after TAVR as compared with surgical aortic-valve replacement
Chapter 13: Valve Replacement, Valve Implantation and Valve Repair
13.2 Aortic Valve
13.2.1 New method for performing Aortic Valve Replacement: Transmural catheter procedure developed at NIH, Minimally-invasive tissue-crossing – Transcaval access, abdominal aorta and the inferior vena cava
13.2.4 Surgical Aortic Valve Replacement (SAVR) vs Transcatheter Aortic Valve Implantation (TAVI): Results Comparison for Prosthesis-Patient Mismatch (PPM) – adjusted outcomes, including mortality, heart failure (HF) rehospitalization, stroke, and quality of life, at 1 year
13.2.6 Off-Label TAVR Procedures: 1 in 10 associated with higher in-hospital 30-day mortality, 1-year mortality was similar in the Off-Label and the On-Label groups
13.2.11 One year Post-Intervention Mortality Rate: TAVR and AVR – Aortic Valve Procedures 6.7% in AVR, 11.0% in AVR with CABG, 20.7 in Transvascular (TV-TAVR) and 28.0% in Transapical (TA-TAVR) Patients
13.2.16 The Centers for Medicare & Medicaid Services (CMS) covers transcatheter aortic valve replacement (TAVR) under Coverage with Evidence Development (CED)
Chapter 7: Ventricular Failure: Assist Devices, Surgical and Non-Surgical
7.1 Trends in the Industry
The Voice of Series A Content Consultant: Justin D. Pearlman, MD, PhD, FACC
In addition to minimally invasive treatments for coronary disease and valve disease, there are minimally invasive alternatives to heart transplant for the dangerously weak heart (extreme heart failure) which can otherwise result in Cardiogenic Shock. These involve various means to augment or complement the pumping function of the heart, such as a Ventricular Assist Device (VAD) .
With respect to the performance of Mitral Valve Replacement, the current practice favors bioprosthetic valves over mechanical valve replacement for most patients, initially just used for elderly to avoid need for coumadin, but now used at younger ages due to improvements in longevity of the bioprosthetic valves, plus less damage to red cells.
7.1.2 Percutaneous Endocardial Ablation of Scar-Related Ventricular Tachycardia
7.2.4 Experimental Therapy (Left inter-atrial shunt implant device) for Heart Failure: Expert Opinion on a Preliminary Study on Heart Failure with preserved Ejection Fraction
7.3.1 Dilated Cardiomyopathy: Decisions on implantable cardioverter-defibrillators (ICDs) using left ventricular ejection fraction (LVEF) and Midwall Fibrosis: Decisions on Replacement using late gadolinium enhancement cardiovascular MR (LGE-CMR)
Chapter 11: Comparison of Coronary Artery Bypass Graft (CABG) and Percutaneous Coronary Intervention (PCI) / Coronary Angioplasty
11.1 Hybrid Cath Lab/OR Suite
The Voice of Series A Content Consultant: Justin D. Pearlman, MD, PhD, FACC
In an uncommon reversal of opinion, the combined forces of the American Heart Association (AHA) and the American College of Cardiology (ACC) reviewed compelling data and reversed a prior assessment on the need for an on-site cardiovascular surgery support for sites offering interventional cardiac catheterization. The data show that sites offering the intervention without a surgeon achieve better results that sites that ship patients out for the interventions, and that the risk without on-site thoracic surgery backup is negligible.
AHA, ACC Change in requirement for surgical support: Class IIb -> Class IIa Level of Evidence A: Supports Nonemergent PCI without Surgical Backup (Change of class IIb, level of Evidence B).
Larry H Bernstein, MD, FCAP and Justin D Pearlman, MD, PhD, FACC
11.1.2 Coronary Reperfusion Therapies: CABG vs PCI – Mayo Clinic preprocedure Risk Score (MCRS) for Prediction of in-Hospital Mortality after CABG or PCI
Author and Curator: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN
11.1.6 Patients with Heart Failure & Left Ventricular Dysfunction: Life Expectancy Increased by coronary artery bypass graft (CABG) surgery: Medical Therapy alone and had Poor Outcomes
11.2.8 CABG: a Superior Revascularization Modality to PCI in Patients with poor LVF, Multivessel disease and Diabetes, Similar Risk of Stroke between 31 days and 5 years, post intervention
SCAI Releases New Consensus Document on Classification Stages of Cardiogenic Shock
New classification system endorsed by multiple societies was developed to describe five stages of shock
Image courtesy of the Society for Cardiovascular Angiography and Interventions (SCAI).
May 20, 2019 – A newly released expert consensus statement proposes a classification schema for cardiogenic shock (CS) that will facilitate communication in both the clinical and research settings. The document was published online in the Society for Cardiovascular Angiography and Interventions (SCAI)’s Catheterization and Cardiovascular Interventions journal,1 and is endorsed by the American College of Cardiology, American Heart Association, the Society of Critical Care Medicine and the Society of Thoracic Surgeons.
Cardiogenic shock is a condition in which the heart, often abruptly, cannot pump enough blood to meet the body’s needs, according to the Mayo Clinic, most often accompanying larger heart attacks such as myocardial infarction (MI). Outcomes for patients with cardiogenic shock complicating MI have not significantly improved over the last 30 years despite the development of various percutaneous mechanical circulatory support technologies and the national standard of emergent angioplasty and stenting.
SCAI convened a multidisciplinary writing group comprised of leading experts in interventionaland advanced heart failure, non-invasive cardiology, emergency medicine, critical care and cardiac nursing to represent the team-based care of these patients. The writing group developed a new five-stage system that is defined by narrative patient descriptions, physical findings, and biochemical/hemodynamic markers, creating a new language that will facilitate rapid assessment, reassessment over time and communication between providers including hospital systems.
The new CS definition is intended to provide clinicians and researchers with a unified and standardized vocabulary that will translate across all settings. Additionally, the definition aims to facilitate recognition of risk for adverse outcomes and the potential benefit from various interventions and prognosis. The goal is to reduce mortality on both an individual and national scale.
“The main areas we may have failed in the fight to improve mortality in cardiogenic shock is, quite simply, not speaking the same language when describing these patients,” said Srihari S. Naidu, M.D., FSCAI, former SCAI Trustee and chair of the writing group. “Without that, we can’t even begin to understand these patients, how sick they are, what might work and what does not work. This is the most important first step, and it is important to use this classification system to reset our understanding of cardiogenic shock and restart the trials very much needed in this space.”
Renowned Electrophysiologist Dr. Arthur Moss Died on February 14, 2018 at 86
Reporter: Aviva Lev-Ari, PhD, RN
Article ID #252: Renowned Electrophysiologist Dr. Arthur Moss Died on February 14, 2018 at 86. Published on 2/27/2018
WordCloud Image Produced by Adam Tubman
— Stephen
Dr. Moss never lost the opportunity to get to know who an individual is by name, to complement one, to greet one, to teach one, to be available, and to show respect. His contributions to clinical medicine, patient care and physician education, along with pivotal research, is among the ver most notable of our era. I will miss him greatly and extend my most heartfelt gratitude to him and his family.
Stephen Winters, MD Morristown Medical Center
Comments Section
Renowned Cardiologist Arthur J. Moss, Pioneer of Research and Treatment in Sudden Death, Passes Away
Friday, February 16, 2018
Arthur J. Moss, M.D.
Cardiologist Arthur J. Moss, whose research saved hundreds of thousands of lives and improved the standard of care for legions of people with heart disease, died on February 14, 2018. He was 86.
During a career spanning six decades, Moss made some of the most significant and long-lasting discoveries in the prevention and treatment of sudden cardiac death. His astounding accomplishments in scientific research and clinical care stemmed especially from his special devotion to patients; he understood the importance of listening, building trust and working together to bring about change. He was also a skilled leader, able to foster meaningful collaborations that led to some of the most productive clinical trials in all of cardiology.
“Arthur was a man of absolute integrity, both of science and of character, and an amazing visionary who could see where the field of electrophysiology was headed long before others,” said Wojciech Zareba, M.D., Ph.D.,director of the Heart Research Follow-up Program at the University of Rochester Medical Center, who worked closely with Moss for the past 26 years. “He was eternally optimistic in all aspects of his life; he brought a positive attitude to everything he did and didn’t worry about the small stuff, which helped him accomplish great things.”
In 1958, as an intern at Massachusetts General Hospital, Moss planned to pursue a career in hematology. That summer he was called to serve in the United States Navy. When he arrived in Pensacola, Fla., his commanding officers thought he was a cardiologist, for reasons unbeknownst to him. They asked Moss to teach flight surgeons electrocardiography, a test known as an EKG that checks the electrical activity of the heart. Undaunted, he read multiple books on the topic and taught them. The intricacy of the heart’s electrical activity captured Moss’ interest and he never looked back.
Moss spent the first half of his career figuring out which patients were at high risk of sudden cardiac death and the second half finding the best ways to treat them. He became an eminent authority on common arrhythmias that afflict hundreds of thousands of adults with heart disease and often lead to sudden death, as well as rare heart rhythm disorders that are smaller in number but no less deadly.
An unexpected patient visit in 1970 started what Moss called the most rewarding part of his career: his life-long quest to help individuals with Long QT syndrome (LQTS). Doctors could not understand why this patient – a woman in her 30s – would suddenly fall unconscious when she got excited while bowling. An unusual EKG led Moss, then a young cardiologist at URMC, to diagnose LQTS. An uncommon genetic condition caused by a glitch in the heart’s electrical system, LQTS puts patients at high risk of arrhythmias, fainting spells and sudden death.
Moss devised the first effective surgical treatment for the disorder and had the foresight to create the International Long QT Syndrome Registry in 1979, one of the first rare disease registries in the world. The registry allowed Moss and colleagues to identify risk factors that enable early diagnosis; develop multiple treatment options that have achieved an 80 percent reduction in life-threatening events; and contribute to the discovery of multiple genes associated with the disorder. The National Institutes of Health has supported the registry since its creation, and in 2014 Moss received a NIH grant to fund the registry and associated research projects through 2019.
“Not only was Arthur extraordinary in understanding the immediate problem, but he was also visionary in that long before we knew how to analyze genes he started the registry and preserved blood samples that could be used in the future,” said Mark B. Taubman, M.D., CEO of URMC and dean of the School of Medicine and Dentistry. “The registry has become one of the most important repositories in the world, helping prevent thousands of untimely deaths from Long QT and enabling the in-depth investigation of how genetics influence a form of heart disease. The impact of his work is unparalleled.”
Beginning in the 1990s, Moss led the MADIT (Multicenter Automatic Defibrillator Implantation Trial) series of clinical trials, which showed that the implantable cardioverter defibrillator or ICD – a device that detects arrhythmias and shocks the heart back into a normal rhythm – significantly reduces the risk of sudden death in patients who’ve experienced a heart attack. In the early 2000s these findings changed medical guidelines worldwide and led to the use of life-saving ICD therapy in hundreds of thousands of patients.
Later, in 2009, Moss completed the MADIT-CRT trial, which found that cardiac resynchronization therapy plus defibrillator – CRT-D therapy – prevents the progression of heart failure in patients living with mild forms of the disease. The device, which improves the mechanical pumping action of the heartand corrects fatal rhythms, was originally approved to treat patients with severe heart failure. Moss’ work opened the door for multitudes more patients to benefit and live longer, better lives.
“Arthur’s research was so successful and powerful because the results of his studies were usually strikingly positive or negative. This came from his rare ability to ask a simple question, and use a simple clinical trial design,” said Bradford C. Berk, M.D., Ph.D., professor of Medicine and Cardiology at URMC. “He did this so well because he was a superb clinician who had a remarkable insight into the underlying pathologic mechanisms of heart disease.”
Colleagues also credit Moss’ research success to his unique ability to bring people together, trigger discussion, and make all involved – from the highest-ranking physician to the newest graduate student or fellow – feel welcome and valued.
“I first met Art in 1976 and was at least three academic ranks lower than anyone else at the meeting,” said Henry (Hank) Greenberg, M.D., special lecturer of Epidemiology and Medicine at the Columbia University Medical Center. “Art sensed this and stated that everyone at the table contributed. This carried forward for four decades and was a reason why his trials were always superbly done. His ego did not get in the way.”
Moss was founding director of URMCs Heart Research Follow-up Program, a worldwide hub of international studies on medical interventions for sudden death, cardiac arrhythmias, heart attack and heart failure. He published more than 750 scientific papers, including a 1962 article – his first of many in the New England Journal of Medicine – highlighting the first three published cases of cardiopulmonary resuscitation (CPR), which included external chest massage followed by external defibrillation.
Charles J. Lowenstein, M.D., chief of Cardiology at URMC, said, “Arthur’s contributions to cardiac electrophysiology were vast and he was extremely well respected as a clinician and researcher. He also trained hundreds of medical students, residents, and fellows, and inspired many of us to dedicate our lives to medicine. This is his greatest legacy.”
Moss attended Yale as an undergraduate then Harvard Medical School. He interned at Massachusetts General Hospital and finished his residency in Rochester, where he also did a fellowship in cardiology. Moss joined the faculty at URMC in 1966 and stayed for the rest of his career, ultimately becoming the Bradford C. Berk, M.D., Ph.D. Distinguished Professor in Cardiology. A valued member of the faculty, Moss received the Eastman Medal in 2012, the University of Rochester’s highest honor that recognizes individuals who, through their outstanding achievement and dedicated service, embody the high ideals for which the University stands.
On numerous other occasions, Moss was recognized locally, nationally and internationally for his tenacity and advancement of medical and cardiologic science. In 2008 he received the Glorney-Raisbeck Award in Cardiology, the highest honor of the New York Academy of Medicine. A year later he was awarded the prestigious Golden Lionel Awardat the Venice International Cardiac Arrhythmias Meeting. The Heart Rhythm Society, the major international electrophysiology society, bestowed its top honor, theDistinguished Scientist Award, to Moss in 2011 and its Pioneer in Cardiac Pacing and EP Award to Moss in 2017.
On November 11, 2017, just four months before his death, Moss was given the 2017 James B. Herrick Award at the American Heart Association’s Scientific Sessions. The award is given annually to a physician whose scientific achievements have contributed profoundly to the advancement and practice of clinical cardiology.
“Arthur’s passing is very sad news for the world of cardiology and clinical trials,” said David Cannom, director of Cardiology at Good Samaritan Hospital in Los Angeles. “There was no one quite like Arthur in terms of intelligence, judgement, leadership skills and thoughtful friendship. Plus good humor. An era is closing and he will be sorely missed.” Other colleagues from around the world described him as a “true giant” in the field, a “role model,” and a “pioneer.”
Moss’s daughter Deborah, herself a physician, was always inspired by her dad’s curiosity, creativity and perseverance. “He paid close attention to his patients, their stories and their situations, and generated research questions that would make a difference not just for one patient, but for many patients. He was bold, never afraid to try something new, and wouldn’t stop until he solved a problem. Looking back on the entirety of his career, it was really incredible.”
Moss is survived by his wife Joy F. Moss, three children – Katherine M. Lowengrub, M.D., instructor in Psychiatry at the Sackler School of Medicine in Tel Aviv, Israel; Deborah R. Moss, M.D., M.P.H., associate professor of Pediatrics at the University of Pittsburgh Medical Center; and David A. Moss, Ph.D., professor at Harvard Business School – and nine grandchildren and two great-grandchildren. A memorial service will take place at Temple B’rith Kodesh on Elmwood Ave at 11 a.m. on Sunday, February 18. In lieu of flowers, donations may be sent to:
His legacy is a career spanning more than 60 years that was marked by major contributions to cardiac electrophysiology, including the first surgical treatment for long QT syndrome and his leadership in the MADIT trials showing that an implantable cardioverter defibrillator could reduce the risk of sudden cardiac death.
Moss started his career in risk stratification studies and evaluating the potential of ventricular arrhythmias, according to longtime colleague Sanjeev Saksena, MD, past president of the North American Society of Pacing and Electrophysiology. Sakesna said that in 1983 Moss published “pivotal studies on risk stratification after myocardial infarction that led to his recognition as a leader in this field and was famously covered by TIME magazine for these contributions.”
Saksena also noted his early support of Michel Mirowski’s concept of an implanted standby defibrillator. This support, Saksena said “made him a lone voice arguing against the medical establishment more than 40 years ago for development of a therapy that is now a cornerstone of cardiovascular medicine.”
Douglas Zipes, MD, Past President, American College of Cardiology: “Wonderful man, scientist. He was the gold standard role model for the clinician investigator: he took care of patients and advanced the science of cardiology. A great loss, but his observations will live on.”
Robert Myerberg, MD, Professor of Medicine, University of Miami: “Art Moss had had an incredibly productive career. His dominant characteristic was a lack of fear of stepping into areas where there were gaps in our knowledge or untested hypotheses, and find a way to get us on to a path that would ultimately answer important and practical questions … His impact will continue to be felt long into the future. And on a personal level, his warmth and collegiality will be missed by his friends and colleagues.”
Bernard Gersh, MD, Professor of Medicine, Mayo Clinic: “Major contributions to our understanding of the long QT syndrome and the PI [principal investigator] of the major trials that established the clinical role of the ICD.”
Richard L. Page, MD, Chair, Department of Medicine, University of Wisconsin, School of Medicine & Public Health: “Arthur Moss was a consummate professional, gentleman, scholar, and physician. He was a role model for me and for a generation of cardiologists.”
Jagmeet P. Singh MD, Roman W. DeSanctis Endowed Chair in Cardiology, Massachusetts General Hospital Heart Center: “A huge loss for our community. He was my mentor.”
What is the history of STEMI? What is the current treatment for Cardiogenic Shock? The Case Study of Detroit Cardiogenic Shock Initiative
Reporter: Aviva Lev-Ari, PhD, RN
UPDATED on 9/1/2019
Most Promising’ Cardioprotective Strategy Ends Up a Bust
‘It is what it is,’ says one expert
PARIS — Remote ischemic preconditioning failed as a cardioprotective strategy for patients undergoing primary percutaneous coronary intervention (PCI) for ST-segment elevation MI (STEMI), according to the CONDI-2/ERIC-PPCI trial presented here.
The rate of 12-month cardiac death or hospitalization for heart failure was similar between groups randomized to PCI with or without preconditioning (9.4% vs 8.6%, HR 1.10, 95% CI 0.91-1.32), reported investigator Hans Erik Bøtker, MD, PhD, of Aarhus University Hospital in Denmark. In total, there were 5,401 patients randomized in the multicenter study.
“Our trial provides definitive evidence that remote ischemic conditioning offers no benefit on clinical outcome in STEMI patients treated by contemporary optimal [primary] PCI,” he told the audience at the European Society of Cardiology (ESC) congress.
Thus, preconditioning has never been and will not be part of clinical practice, commented Patrick Meybohm, MD, of University Hospital Frankfurt in Germany, who said he agreed with Bøtker’s conclusions.
We present here five videos by Dr. William O’Neill, MD, Medical Director, Center for Structural Heart Disease at Henry Ford Health System, Detroit, MI.
Part 1 to Part 5 cover all aspects of clinical treatment for Cardiogenic Shock as the most advance stage of an Acute MI.
Dr. O’Neill presents a Treatment Model for Cardiogenic Shock that has the potential to be scaled up from a Regional Level in Detroit, MI to a National level including scaling up the Platform for Clinical Trials and Clinical Protocols for improving outcomes.
DALLAS — Two studies evaluating therapeutic hypothermia strategies in patients who had experienced an out-of-hospital cardiac arrest — one looking at the timing of induction and one looking at diffe…
— Stephen