MYBPC3 gene and the heart
Larry H. Bernstein, MD, FCAP, Curator
LPBI
MYBPC3 myosin binding protein C, cardiac [ Homo sapiens (human) ]
http://www.ncbi.nlm.nih.gov/gene/4607
MYBPC3 provided by HGNC
Official Full Name – myosin binding protein C, cardiac provided by HGNC
Primary source – HGNC:HGNC:7551 ;
See related Ensembl:ENSG00000134571; HPRD:02980; MIM:600958; Vega:OTTHUMG00000166986
Gene type protein coding RefSeq status
REVIEWED Organism Homo sapiens
LineageEukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo
Also known asFHC; CMH4; CMD1MM; LVNC10; MYBP-C
SummaryMYBPC3 encodes the cardiac isoform of myosin-binding protein C. Myosin-binding protein C is a myosin-associated protein found in the cross-bridge-bearing zone (C region) of A bands in striated muscle. MYBPC3, the cardiac isoform, is expressed exclussively in heart muscle. Regulatory phosphorylation of the cardiac isoform in vivo by cAMP-dependent protein kinase (PKA) upon adrenergic stimulation may be linked to modulation of cardiac contraction. Mutations in MYBPC3 are one cause of familial hypertrophic cardiomyopathy. [provided by RefSeq, Jul 2008]
What is the official name of the MYBPC3 gene?
The official name of this gene is “myosin binding protein C, cardiac.”
MYBPC3 is the gene’s official symbol. The MYBPC3 gene is also known by other names, listed below.
Read more about gene names and symbols on the About page.
What is the normal function of the MYBPC3 gene?
The MYBPC3 gene provides instructions for making the cardiac myosin binding protein C (cardiac MyBP-C), which is found in heart (cardiac) muscle cells. In these cells, cardiac MyBP-C is associated with a structure called the sarcomere, which is the basic unit of muscle contraction. Sarcomeres are made up of thick and thin filaments. The overlapping thick and thin filaments attach to each other and release, which allows the filaments to move relative to one another so that muscles can contract. Regular contractions of cardiac muscle pump blood to the rest of the body.
In cardiac muscle sarcomeres, cardiac MyBP-C attaches to thick filaments and keeps them from being broken down. Cardiac MyBP-C has chemical groups called phosphate groups attached to it; when the phosphate groups are removed, cardiac MyBP-C is broken down, followed by the breakdown of the proteins of the thick filament. Cardiac MyBP-C also regulates the rate of muscle contraction, although the mechanism is not fully understood.
Does the MYBPC3 gene share characteristics with other genes?
The MYBPC3 gene belongs to a family of genes called fibronectin type III domain containing(fibronectin type III domain containing). It also belongs to a family of genes called immunoglobulin superfamily, I-set domain containing (immunoglobulin superfamily, I-set domain containing). It also belongs to a family of genes called MYBP (myosin binding proteins).
A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? in the Handbook.
Aliases for MYBPC3 Gene
http://www.genecards.org/cgi-bin/carddisp.pl
GO – Molecular functioni
http://www.uniprot.org/uniprot/Q14896
- ATPase activator activitySource: BHF-UCL
- identical protein bindingSource: IntAct
- metal ion bindingSource: UniProtKB-KW
- myosin bindingSource: BHF-UCL
- myosin heavy chain bindingSource: BHF-UCL
- structural constituent of muscleSource: BHF-UCL
- titin bindingSource: BHF-UCL
GO – Biological processi
- cardiac muscle contractionSource: BHF-UCL
- cell adhesionSource: UniProtKB-KW
- heart morphogenesisSource: BHF-UCL
- muscle filament slidingSource: Reactome
- myosin filament assemblySource: Ensembl
- positive regulation of ATPase activitySource: BHF-UCL
- regulation of heart rateSource: Ensembl
- regulation of muscle filament slidingSource: BHF-UCL
- regulation of striated muscle contractionSource: BHF-UCL
- sarcomere organizationSource: Ensembl
- ventricular cardiac muscle tissue morphogenesisSource: HGNC
Keywords – Molecular functioni
Keywords – Biological processi
Keywords – Ligandi
Actin-binding, Metal-binding, Zinc
Enzyme and pathway databases
Organization and Sequence of Human Cardiac Myosin Binding Protein C Gene (MYBPC3) and Identification of Mutations Predicted to Produce Truncated Proteins in Familial Hypertrophic Cardiomyopathy
Lucie Carrier, Gisele Bonne, Ellen Bahrend, Bing Yu, Pascale Richard, Florence Niel, Bernard Hainque, et al.
Circulation Research.1997; 80: 427-434 http://dx.doi.org:/10.1161/01.res.0000435859.24609.b3
Cardiac myosin binding protein C (MyBP-C) is a sarcomeric protein belonging to the intracellular immunoglobulin superfamily. Its function is uncertain, but for a decade evidence has existed for both structural and regulatory roles. The gene encoding cardiac MyBP-C (MYBPC3) in humans is located on chromosome 11p11.2, and mutations have been identified in this gene in unrelated families with familial hypertrophic cardiomyopathy (FHC). Detailed characterization of the MYBPC3 gene is essential for studies on gene regulation, analysis of the role of MyBP-C in cardiac contraction through the use of recombinant DNA technology, and mutational analyses of FHC. The organization of human MYBPC3 and screening for mutations in a panel of French families with FHC were established using polymerase chain reaction, single-strand conformation polymorphism, and sequencing. The MYBPC3 gene comprises >21 000 base pairs and contains 35 exons. Two exons are unusually small in size, 3 bp each. We found six new mutations associated with FHC in seven unrelated French families. Four of these mutations are predicted to produce truncated cardiac MyBP-C polypeptides. The two others should each produce two aberrant proteins, one truncated and one mutated. The present study provides the first organization and sequence for an MyBP-C gene. The mutations reported here and previously in MYBPC3 result in aberrant transcripts that are predicted to encode significantly truncated cardiac MyBP-C polypeptides. This spectrum of mutations differs from the ones previously observed in other disease genes causing FHC. Our data strengthen the functional importance of MyBP-C in the regulation of cardiac work and provide the basis for further studies.
Cardiac MyBP-C is a member of a family comprising isoforms specific for slow-skeletal, fast-skeletal, and cardiac muscles. The skeletal isoforms were initially described in 1971 [1] and later came to be recognized as proteins with specific myosin- and titin-binding properties located in the A bands of the thick filaments of all vertebrate cross-striated muscle and forming a series of seven to nine transverse stripes, 43 nm apart, in the crossbridgebearing region. [2-5] Subsequent cloning of the three isoforms showed them to belong to the intracellular immunoglobulin superfamily and to share a conserved domain pattern consisting of IgI set domains and fn-3 domains. [6-11]
Comparison of the cardiac and the skeletal MyBP-C isoform sequences reveals three distinct regions that are specific to the cardiac isoform: the N-terminal domain C0 IgI containing 101 residues, the MyBP-C motif (a 105-residue stretch linking the C1 and C2 IgI domains), and a 28-residue loop inserted in the C5 IgI domain. [7,12,13] The MyBP-C motif is not specific to the cardiac isoform, but the alignment of skeletal and cardiac sequences revealed the addition of a nine-residue loop in the cardiac variant, which is the key substrate site for phosphorylation by both protein kinase A and a calmodulin-dependent protein kinase associated with the native protein. [7] As for the 28-residue loop, it is strictly cardiac specific. [14,15] The major myosin-binding site of MyBP-C resides in the C-terminal C10 IgI domain and is mainly restricted to the last 102 amino acids. [16-18] The titin-binding site is also located in the C-terminal region, spanning the C8 to C10 IgI domains of the molecule. [6,13]
The function of MyBP-C is uncertain, but for a decade evidence has existed to indicate both structural and regulatory roles. It should be stressed, however, that most studies were performed on skeletal muscles and that very little functional data exist for cardiac muscle. Several investigators have shown that MyBP-C modulates in vitro the shape and the length of sarcomeric thick filaments [19-21] and that depending on ionic strength and the molar ratio of actin and myosin in solution, the addition of MyBP-C can modulate the actin-activated ATPase activity of skeletal and cardiac myosins. [3,22,23] Partial extraction of the MyBP-C from rat skinned cardiac myocytes and rabbit skeletal muscle fibers alters Ca2+-sensitive tension, supporting the view that contractile function is affected by MyBP-C. [24] This view was very recently strengthened by the elegant studies of Weisberg and Winegrad. [25] These authors showed that phosphorylation of cardiac MyBP-C alters myosin crossbridges in native thick filaments isolated from rat ventricles and suggested that MyBP-C can modify force production in activated cardiac muscles.
The gene encoding the cardiac isoform in humans (MYBPC3) was assigned to the chromosomal location 11p11.2 [7] in a region where we had identified the CMH4 disease locus in FHC. [26] Recently, three mutations in MYBPC3 have been identified in unrelated families with FHC by our group [27] and others. [28] FHC is a genetically and phenotypically heterogeneous disease, transmitted as an autosomal-dominant trait. None of the previous hypotheses of the pathophysiological mechanisms would have predicted that defects in sarcomeric protein genes could be a possible molecular basis for the disease. The results of molecular genetic studies have nevertheless shown that many forms of the disease involve mutations in genes encoding sarcomeric proteins (for reviews, see [29-31]), and the findings that MYBPC3 is one of these disease genes are consistent with the view that cardiac MyBP-C may play a more important role in the regulation of cardiac contraction than was previously thought.
Detailed characterization of the MYBPC3 gene is essential for studies of gene regulation, analysis of the role of cardiac MyBP-C in the sarcomere structure and function through the use of recombinant DNA technology, and, finally, mutational analyses and further studies in FHC. In the present work, we have determined the organization and sequence of the human MYBPC3 gene and shown it to exceed 21 000 bp in size and to contain 35 exons, out of which 34 are coding. We also report that six new mutations in the MYBPC3 gene are associated with FHC in seven unrelated French families. Four of these mutations are predicted to produce truncated cardiac MyBP-C polypeptides in these families. The two others should each produce two aberrant proteins, one truncated and the other mutated or deleted.
Screening the Human MYBPC3 Gene for Mutations
The primers were constructed on the basis of flanking intron sequences and were used to amplify each exon (see Table 1). The touchdown PCR was performed (as described above according to the conditions reported in Table 1) on genomic DNA from unrelated FHC patients. For SSCP, PCR products were denatured for 5 minutes at 96 degrees C in a standard denaturing buffer, kept on ice for 5 minutes, loaded onto 6% to 10% polyacrylamide gels, and then run at 6 mA and at 7 degrees C or 20 degrees C in a Hoeffer apparatus. The bands were visualized after silver staining of the gels (Bio-Rad). Sequencing was performed as described above.
Oligonucleotide Primers and PCR Conditions for Detection of Mutations in Human MYBPC3 Gene
Total cellular RNA was isolated from human lymphoblastoid cell lines using RNA Plus (Bioprobe Systems), and the cDNA synthesis was performed as previously described. [27] The cDNA products were amplified in a 50-micro L PCR reaction using two outer primers (see Table 2). A second round of PCR was performed with a final dilution of 1:100 of the first round products, using nested primers (see Table 2). The primers were determined according to the cDNA sequence (EMBL accession number X84075), and cDNA fragments were amplified using a touchdown PCR protocol between 70 degrees C and 60 degrees C. Sizes of normal and mutated cDNA-PCR fragments were assessed, followed by size-fractionation on agarose gels. After extraction and purification of the normal and the putative mutated cDNAs, they were cloned using pGEM-T System II (Promega) and then sequenced as described above.
Oligonucleotide Primers for MYBPC3 cDNA Amplifications
Genomic Organization and Sequence of Human MYBPC3
The size of introns was first estimated by PCR amplification of DNA segments between exons from control genomic DNA, followed by size-fractionation of the PCR products on agarose gels. The exon/intron boundaries and the entire intronic sequences were then determined by sequencing. The sequences have been deposited with EMBL (accession number Y10129). The schematic organization of the human MYBPC3 gene and the alignment of exons with structural domains in the protein are shown in Figure 1. The gene comprises >21 000 bp and contains 35 exons, out of which 34 are coding. A (GT) repeat was found in intron 20 (data not shown). The 101-residue N-terminal extra IgI domain is encoded by exons 1 to 3; the proline-rich domain (51 residues), by exons 3 and 4; the C1 IgI domain (104 residues), by exons 4 to 6; the MyBP-C motif (105 residues), by exons 6 to 12; the C2 IgI domain (91 residues), by exons 12 to 16; the C3 IgI domain (91 residues), by exons 16 to 18; the C4 IgI domain (90 residues), by exons 18 to 20; the linker (11 residues), by exons 20 and 21; the C5 IgI domain (127 residues), by exons 21 to 24; the C6 fn-3 domain (98 residues), by exons 24 to 26; the C7 fn-3 domain (101 residues), by exons 26 to 28; the C8 IgI domain (95 residues), by exons 28 to 30; the C9 fn-3 domain (115 residues), by exons 30 to 32; and the C-terminal C10 IgI domain (94 residues), by exons 32 to 34.
Schematic organization of the human MYBPC3 gene and alignment of exons with structural domains of the protein. Top, The structural domains of cardiac MyBP-C. The high-affinity myosin heavy chain domain (confined to the C10 IgI repeat), the titin binding site (C8 to C10), and the phosphorylation sites are indicated. Middle, The mRNA with the limits of exons. Bottom, the schematic organization of the gene with locations of exons shown by boxes and introns shown by horizontal lines. The exons are numbered from the 5 prime end of the gene, with exon 1 containing the first codon ATG. The exons coding for structural domains are indicated by interrupted lines.
The sizes of exons and introns are summarized in Table 3. The exon sizes, excluding the 5 prime and 3 prime untranslated regions, vary between 3 and 267 bp. Two of the exons, ie, exons 10 and 14, are unusually small and contain three nucleotides each. The remaining 32 exons vary in size between 18 and 267 bp. Twenty-seven exons finish with a split codon (see Table 3). The intron sizes vary between 85 and [nearly =]2000 bp. The major consensus donor splice site is GTGAG in 53% of the cases, and the major consensus acceptor splice site is CAG in 91% of the cases. Twenty-seven of the 34 introns contain putative branch point sequences located -14 to -51 upstream from each splice acceptor site. Introns 1, 4, 11, 14, 16, 24, and 31 do not contain any known consensus branch point sequence.
Exon-Intron Boundaries in the Human MYBPC3 Gene Identification of Mutations in MYBPC3 Gene Associated With FHC
Because the families were not large enough to assess linkage on the basis of a statistically significant Lod score, we used haplotype analysis to define the disease locus responsible for FHC in each family. Linkage was established on the basis of the transmission of a common haplotype in affected individuals and exclusion on the basis of affected recombinant individuals. Families 717 and 740 presented linkage only to CMH4, and the other five families (families 702, 716, 731, 750, and 754) were less informative but at least potentially linked to CMH4 (data not shown).
All the exon-intron boundaries were analyzed by PCRSSCP according to the conditions described in Table 2. A total of six new mutations were identified in MYBPC3 associated with FHC in seven unrelated French families (Figure 2 andFigure 3, Table 4).
Consequences at mRNA Level of MYBPC3 Mutations
Pedigrees of families with MYBPC3 gene mutations. Clinical affection status is indicated: darkened, affected; clear, unaffected; and clear with a cross, indeterminate. Genetically affected status is indicated by an asterisk. The mutations (M) are as follows: M1, GTGAG[arrow right]GTGAA splice donor site mutation in intron 7; M2, GAA[arrow right]CAA mutation in exon 17; M3, GT[arrow right]AT splice donor site mutation in intron 23; M4, TGAT[arrow right]TGGT transversion in the branch point consensus sequence of intron 23; M5, [-GCGTC] deletion in exon 25; and M6, duplication [+TTCAAGAATGGC]/deletion [-ACCT] in exon 33.
Normal and mutated cardiac MyBP-C polypeptides. N indicates the normal structure of human cardiac MyBP-C; M1 to M6 correspond to the predicted products of the aberrant MyBP-C cDNAs resulting from the different mutations.
M1 is a GTGAG[arrow right]GTGAA transition in the 3 prime splice donor site of intron 7 in family 717. The G residue at position +5 in the intron is a highly conserved nucleotide in the splice donor consensus sequence. [33] The G[arrow right]A mutation inactivates this donor site. Amplification of MYBPC3 cDNA from patients’ lymphocytes identified the skipping of the 49-bp exon 7 that produces a frameshift. No alternative splice donor site was found in intron 7. The aberrant cDNA encodes 258 normal cardiac MyBP-C residues, followed by 25 new amino acids, and a premature termination of translation. This should produce a large truncated protein (-80%) lacking the MyBP-C motif containing the phosphorylation sites and the titin and myosin binding sites.
M2 is a G[arrow right]C transversion at position 1656 in exon 17 in families 702 and 750 that produces a mutated polypeptide in the C3 domain at the position 542 (Glu[arrow right]Gln). Otherwise, this mutation affects the last nucleotide of the exon, which is part of the consensus splicing site. [34] A common feature in human exon-intron boundaries is that 80% of exons finish with a guanine (85% in MYBPC3). This mutation also results in an aberrant transcript in lymphocytes (with the skipping of exon 17) that directly introduces a stop codon. The aberrant cDNA encodes 486 normal cardiac MyBP-C residues, leading to a truncated protein (-62%) that lacks the titin and myosin binding sites.
M3 is a GT[arrow right]AT transition in the 3 prime splice donor site of intron 23 in family 716 that inactivates this splicing site. This mutation produces the skipping of the 160-bp exon 23. No alternative splice donor site was found in lymphocytes. The mutated cDNA identified in lymphocytes encodes 717 normal residues and then 51 novel amino acids, followed by premature termination of the translation in the C5 domain, leading to a potential truncated protein (-44%) that loses the titin and myosin binding domains.
M4 is a TGAT[arrow right]TGGT transition in intron 23 in family 740. This A[arrow right]G mutation inactivates a potential branch point consensus sequence (URAY). Although three potential branch points exist upstream from the mutation, they do not seem to be used, since analysis of the transcripts in lymphocytes indicates the existence of two aberrant cDNAs. One corresponds to the skipping of the 105-bp exon 24 without frameshift and encodes a polypeptide depleted of 35 amino acids in the C6 domain (-50% of C6). The other still contains the 724-bp intron 23. This mutant cDNA is associated with a frameshift: it encodes 770 normal cardiac MyBP-C residues and then 100 novel amino acids, followed by a stop codon, and the corresponding truncated protein (-40%) should not interact with either titin or myosin.
M5 is a 5-bp deletion (-GCGTC) in exon 25 in family 731. This deletion also produces a frameshift: the aberrant cDNA identified in the lymphocytes encodes 845 normal MyBP-C residues and then 35 novel amino acids, followed by a premature stop codon in the C6 domain that should produce a truncated protein (-34%), losing the C-terminal region containing both the titin- and myosin-binding sites.
M6 is a 12-bp duplication (+TTCAAGAATGGC)/4-bp deletion (-ACCT) in exon 33 in family 754. This modification introduces a frameshift at position 3691 that leads to 1220 normal MyBP-C residues and then 19 novel amino acids, followed by a premature stop codon in the last third part of the C10 domain. The predicted truncated protein (-4%) should also lose part of its myosin binding site.
All these six mutations were absent in 200 samples from control unrelated subjects without FHC and also in 42 unrelated probands with FHC (out of which 8 have mutations in MYBPC3, 8 have mutations in the beta-myosin heavy chain gene [MYH7], 1 has a mutation in the cardiac troponin T gene, and 25 have presently undefined mutations).
The present work describes the first genomic organization for an MyBP-C. The gene is over 21 000 bp and contains 35 exons. An interesting feature of the organization of this gene is that there is a striking correspondence between the limits of the exons and those of structural domains (Figure 1). The IgI and fn-3 domains are encoded by two or three exons. The linker region between the IgI C4 and IgI C5 domains corresponds to exon 20. Twenty-six of the 28 cardiac-specific amino acids of the IgI C5 domain correspond to exon 22. Finally, the MyBP-C motif is encoded by the most complex exon structure: the nine cardiac-specific amino acids correspond to exon 8, and the four phosphorylation sites described by Gautel et al [7] are encoded by six exons and are located at the end or at the junction of two exons (phosphorylation sites: A, junction of exons 7 and 8; B, end of exon 8; C, end of exon 9, exon 10, and beginning of exon 11; and D, end of exon 12). The correlation between exonic organization and protein structure has also recently been described concerning the titin, [35] suggesting a common feature for the intracellular immunoglobulin superfamily.
We suggest that the new mutations described here cause FHC because they segregate with the disease, are not present in controls, and result in aberrant transcripts that are predicted to encode significantly altered cardiac MyBP-C polypeptide structure and/or function. They are all transcribed into mRNAs in lymphocytes. However, because most, if not all, genes in humans are thought to be transcribed at very low levels in lymphocytes (“illegitimate transcription”), [36] these results do not address the hypothesis that these mutations are expressed in the diseased myocardium. Since cardiac MyBP-C is specifically expressed in heart, ventricular tissue is needed to address this issue, and we had no access to any myocardial specimens. One study documented the expression of a missense mutation in the mRNA for the beta-myosin heavy chain in myocardial tissue from an affected patient with FHC. [37] Because the beta-myosin heavy chain is normally expressed in slow-twitch skeletal fibers, skeletal muscle biopsies can also be used to show that the mutated myosin is produced in the muscle and that the mutation alters the function of the beta-myosin and the contractile properties of the muscle fibers. [38,39] One might thus reasonably assume that the MYBPC3 gene mutations are expressed in the myocardium and that they exert their effect by altering the multimeric complex assembly of the cardiac sarcomere via at least one of these mechanisms: (1) They can act as “poison polypeptides” through a dominant-negative effect. The altered proteins would be incorporated in the sarcomere and would alter the assembly of the sarcomeric filaments, since most truncated MyBP-Cs are unable to cross-link the titin and/or myosin molecules. (2) They can act as “null alleles,” potentially leading to haplo insufficiency; the production of insufficient quantities of normal cardiac MyBP-C would produce an imbalance in stoichiometry of the thick-filament components that would be sufficient to alter the sarcomeric structure and function. (3) Since myosin, titin, and MyBP-C might be translated and assembled cotranslationally, one can also assume that the misfolded, mutated MYBPC3 mRNAs may disturb the translation of the other sarcomeric components that would interfere with the proper assembly of sarcomeric structures.
The full spectrum of mutations of the FHC disease genes is far from known, but it is intriguing to note that most mutations found so far in MYH7 are missense ones, whereas most of those in MYBPC3 disrupt the reading frame and produce premature stop codons. Both genes are large ones, composed of [nearly =]40 exons, and there are no reasons for different types of mutations in the two genes. Thus, one might hypothesize that mutations leading to truncated proteins exist also for MYH7 in humans but have no deleterious effect. In support of this are the reports of two deletions in the C-terminal part of the beta-myosin heavy chain molecule with almost no phenotype. One is a 2.4-kbp deletion including part of intron 39 and exon 40 containing the 3 prime untranslated region and the polyadenylation signal, which was reported in a small pedigree. [40] Only the proband had developed clinically diagnosed hypertrophic cardiomyopathy at a very late onset (age, 59 years), and the other genotypically affected family members had not developed the disease at 10, 32, and 33 years. The other one is a large deletion leaving only a short variant of the beta-myosin heavy chain constituting only the first 53 residues of the molecule (out of 1935). This deletion was found by chance in an unaffected individual. [41] For MYBPC3, in contrast, the majority of the mutations described so far produce the C-terminal truncation of the cardiac MyBP-C polypeptides and are associated with an FHC phenotype. However, no definitive conclusion can be drawn at this stage concerning the pathogenic mechanisms of mutations in these two genes. The present work provides the molecular basis for the production of transgenic animals for cardiac MyBP-C that will help to resolve some of these issues.
-
Received December 2, 1996; accepted January 10, 1997.
-
This manuscript was sent to Laurence Kedes, Consulting Editor, for review by expert referees, editorial decision, and final disposition.
-
- Selected Abbreviations and Acronyms
- EMBL
- European Molecular Biology Laboratory
- FHC
- familial hypertrophic cardiomyopathy
- fn-3
- fibronectin III
- MyBP-C
- myosin binding protein C
- PCR
- polymerase chain reaction
- SSCP
- single-strand conformation polymorphism analysis
- © 1997 American Heart Association, Inc.
MYBPC3 – Hypertrophic Cardiomyopathy Testing
http://www.cincinnatichildrens.org/workarea/downloadasset.aspx?id=90111
Hypertrophic Cardiomyopathy (HCM) is relatively common, with a prevalence of 1 in 500 adults (1). HCM is a primary disorder of heart muscle characterized by left ventricular hypertrophy. The most classic finding in HCM is asymmetric septal hypertrophy, with or without left ventricular outflow tract obstruction. The disease demonstrates extensive clinical variability with regard to age of onset, severity and progression of disease. HCM can affect infants and children although it is more typically identified in adolescence or adulthood (2,3).
The MYBPC3 gene codes for cardiac myosin binding protein C. Phosphorylation of this protein modulates contraction and is an important component of the sarcomere (4). The MYBPC3 gene contains 35 exons and is located at chromosome 11p11.2. Up to 40% of individuals with a clinical diagnosis of HCM have MYBPC3 mutations (2). MYBPC3 mutations are inherited in an autosomal dominant manner. The majority of individuals inherit the MYBPC3 from a parent, although de novo mutations do occur. Mutations in MYBPC3 and MYH7 genes are the most common causes of HCM. However, the disease is genetically heterogeneous and sequencing additional genes should be considered if familial HCM is suspected or the underlying etiology remains unknown. Approximately 50-65% of individuals with a known or suspected diagnosis of familial HCM have a mutation in one of a number of genes encoding components of the sarcomere and cytoskeleton (3). Compound heterozygous mutations have been reported in MYBPC3 and other genes associated with HCM (5). Mutations in the MYBPC3 gene have been primarily associated with HCM, but can also be associated with other types of heart muscle disease including dilated cardiomyopathy, restrictive cardiomyopathy and left-ventricular non-compaction (6).
Indication MYBPC3 testing is utilized to confirm a diagnosis of HCM in patients with clinically evident disease. Genetic testing also allows for early identification and diagnosis of individuals at greatest risk prior to the expression of typical clinical manifestations. If a mutation is identified in an asymptomatic individual, regular and routine outpatient follow up is indicated. If clinically unaffected members of a family with an identified mutation for HCM are found not to carry that mutation, they can be definitely diagnosed as unaffected and reassured that neither they nor their children will be at higher risk compared to the general population to develop symptoms related to HCM. A negative test result in an individual with a known familial mutation also eliminates the need for routine follow up.
Methodology:
All 35 exons of the MYBPC3 gene, as well as the exon/intron boundaries and a portion of untranslated regions of the gene are amplified by PCR. Genomic DNA sequences from both forward and reverse directions are obtained by automatic fluorescent detection using an ABI PRISM® 3730 DNA Analyzer. Sequence variants different from National Center for Biotechnology Information GenBank references are further evaluated for genetic significance. If a mutation is identified, a known familial mutation analysis will be available for additional family members.
Sensitivity & Accuracy:
Greater than 98.5% of the mutations in exon 1-35 of MYBPC3 are detectable by sequence based methods. Sequencing does not detect deletions or duplications. Mutations in MYBPC3 account for up to 40% of cases of idiopathic hypertrophic cardiomyopathy.
References:
1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the cardia study. Coronary artery risk development in (young) adults. Circulation. 1995;92:785-789.
2. Kaski JP, Syrris P, Esteban MT, Jenkins S, Pantazis A, Deanfield JE, McKenna WJ, Elliott PM. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circulation Cardiovascular Genetics. 2009;2:436441.
3. Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE. Shared genetic causes of cardiac hypertrophy in children and adults. The New England Journal of Medicine. 2008;358:1899-1908.
4. van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J. Cardiac myosin-binding protein c mutations and hypertrophic cardiomyopathy: Haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation. 2009;119:1473-1483.
5. Van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, Ackerman MJ. Myosin binding protein c mutations and compound heterozygosity in hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2004;44:1903-1910.
6. Hershberger RE, Norton N, Morales A, Li DX, Siegfried JD, Gonzalez-Quintana J. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. CirculationCardiovascular Genetics. 2010;3:155-161.
Leave a Reply