Feeds:
Posts
Comments

Posts Tagged ‘vitamins’


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Antioxidant micronutrients, such as vitamins and carotenoids, exist in abundance in fruit and vegetables and have been known to contribute to the body’s defence against reactive oxygen species. Numerous epidemiological studies have demonstrated that a high dietary consumption of fruit and vegetables rich in carotenoids or with high serum carotenoid concentrations results in lower risks of certain cancers, diabetes and cardiovascular disease. These epidemiological studies have suggested that antioxidant carotenoids may have a protective effect against diabetes or cardiovascular disease. However, the consumption of carotenoids in pharmaceutical forms for the treatment or prevention of these chronic diseases cannot be recommended, because some large randomized controlled trials did not reveal any reduction in cardiovascular events or type 2 diabetes with b-carotene. High doses of carotenoids used in the supplementation studies could have a pro-oxidant effect. Therefore, it is favourable to intake carotenoids from foods through the combination of other nutrients such as vitamins, minerals or phytochemicals, not by supplements.

The metabolic syndrome is a clustering of metabolic abnormalities that increase the risk for diabetes and cardiovascular disease. Typically, it includes excess weight, hyperglycaemia, evaluated blood pressure, low concentration of HDL-cholesterol, and hypertriacylglycerolaemia. This syndrome is emerging as one of the major medical and public health problems in Japan, and persons with this syndrome have an increased risk of morbidity and mortality due to cardiovascular disease and diabetes. Recently, many studies have examined the associations of dietary patterns with the metabolic syndrome and shown that diets rich in fruit and vegetables have been inversely associated with the metabolic syndrome. These previous reports suggest that a high intake of fruit and vegetables may reduce the risk of the metabolic syndrome through the beneficial combination of antioxidants, fibre, minerals, and other phytochemicals. Some recent cross-sectional and case–control studies have shown the associations of serum antioxidant status with the metabolic syndrome. Ford et al. reported that low intake and/or low serum concentrations of vitamins and carotenoids were associated with the risk of the metabolic syndrome. Although very few data are available about the associations of antioxidant carotenoids with the metabolic syndrome, people who have the metabolic syndrome are more likely to have increased oxidative stress than people who do not have this syndrome.

In some recent studies, it has been reported that oxidative stress, which is an imbalance between pro-oxidants and antioxidants, occurs more frequently in metabolic syndrome subjects than in non-metabolic syndrome subjects. Oxidative stress may play a key role in the pathophysiology of diabetes and cardiovascular disease. On the other hand, smoking is a potent oxidative stress in man. This increment of oxidative stress induced by smoking may develop insulin resistance, and increased insulin resistance may result in the clustering of the metabolic abnormality. Therefore, antioxidants could have a beneficial effect on reducing the risk of these conditions in smokers. However, there is limited information about the interaction of serum antioxidant carotenoids and the metabolic syndrome with smoking habit. This study was aimed to investigate the interaction of serum carotenoid concentrations and the metabolic syndrome with smoking. The association of the concentrations of six serum carotenoids, i.e. lutein, lycopene, a-carotene, b-carotene, b-cryptoxanthin and zeaxanthin, with metabolic syndrome status stratified by smoking status was evaluated crosssectionally.

In this study, the associations of the serum carotenoids with the metabolic syndrome stratified by smoking habit were evaluated cross-sectionally. A total of 1073 subjects (357 male and 716 female) who had received health examinations in the town of Mikkabi, Shizuoka Prefecture, Japan, participated in the study. Inverse associations of serum carotenoids with the metabolic syndrome were more evident among current smokers than non-smokers. These results support that antioxidant carotenoids may have a protective effect against development of the metabolic syndrome, especially in current smokers who are exposed to a potent oxidative stress.

Source References:

http://www.ncbi.nlm.nih.gov/pubmed/18445303

http://www.ncbi.nlm.nih.gov/pubmed/19450371

http://www.ncbi.nlm.nih.gov/pubmed/21216053

http://www.ncbi.nlm.nih.gov/pubmed/19631019

http://www.ncbi.nlm.nih.gov/pubmed/12324189

http://www.ncbi.nlm.nih.gov/pubmed/18689373

Read Full Post »


Metabolomics: its Applications in Food and Nutrition Research

Reporter and Curator: Sudipta Saha, Ph.D.

 

Metabolomics is a relatively new field of “omics” research concerned with the high-throughput identification and quantification of small molecule (<1500 Da) metabolites in the metabolome. The metabolome is formally defined as the collection of all small molecule metabolites or chemicals that can be found in a cell, organ or organism. These small molecules can include a range of endogenous and exogenous chemical entities such as peptides, amino acids, nucleic acids, carbohydrates, organic acids, vitamins, polyphenols, alkaloids, minerals and just about any other chemical that can be used, ingested or synthesized by a given cell or organism.

Metabolomics is ideally positioned to be used in many areas of food science and nutrition research including food component analysis, food quality/authenticity assessment, food consumption monitoring and physiological monitoring in food intervention studies. However, the potential impact of metabolomics is still limited by two factors: (1) technology and (2) databases. In terms of instrumentation, it is clear that significant improvements need to be made to make metabolite detection and quantification technology more robust, automated and comprehensive. While promising advances have been made, current techniques are only capable of detecting perhaps 1/10th of the relevant metabolome. This expanded breadth and depth of coverage is particularly important in food and nutrition studies.

Many more reference spectral or chromatographic databases on metabolites, food components and phytochemicals need to be developed and made public. It is only through these databases that nutritionally relevant compounds can be routinely identified or quantified. Indeed a comprehensive effort, similar to that undertaken to annotate the human metabolome, needs to be made to complete and annotate the “food metabolome”. Similar efforts also need to be directed towards creating publicly accessible, comprehensive nutritional phenotype databases that include quantitative metabolomic (and other omic) data collected from diet-challenge or food intervention experiments. While these kinds of endeavours may take years to complete and cost millions of dollars, hopefully the food science community (and its funding agencies) will find a way of coordinating its activities to complete these efforts. Indeed, having public resource like a food metabolome database or a nutritional phenotype database could be as valuable to food scientists as GenBank has been to molecular biologists.

Source References:

http://www.sciencedirect.com/science/article/pii/S0924224408000770

http://www.sciencedirect.com/science/article/pii/B9780123945983000010

http://www.sciencedirect.com/science/article/pii/S092422440900226X

http://www.sciencedirect.com/science/article/pii/S1359644605036093

http://www.sciencedirect.com/science/article/pii/B9780080885049000520

http://www.sciencedirect.com/science/article/pii/B9780123744135000051

Other articles related to this topic were published on this Open Access Online Scientific Journal, including the following:

Ca2+ signaling: transcriptional control

Larry H. Bernstein, MD, FCAP, Reporter, RN 03/06/2013

https://pharmaceuticalintelligence.com/2013/03/06/ca2-signaling-transcriptional-control/

Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders @ http://pharmaceuticalintelligence.com

Aviva Lev-Ari, PhD, RN 01/12/2013

https://pharmaceuticalintelligence.com/2013/01/12/harnessing-personalized-medicine-for-cancer-management-prospects-of-prevention-and-cure-opinions-of-cancer-scientific-leaders-httppharmaceuticalintelligence-com/

Breakthrough Digestive Disorders Research: Conditions affecting the Gastrointestinal Tract.

Aviva Lev-Ari, PhD, RN 12/12/2012

https://pharmaceuticalintelligence.com/2012/12/12/breakthrough-digestive-disorders-research-conditions-affecting-the-gastrointestinal-tract/

A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

Larry H. Bernstein, MD, FCAP, Reporter, RN 12/03/2012

https://pharmaceuticalintelligence.com/2012/12/03/a-second-look-at-the-transthyretin-nutrition-inflammatory-conundrum/

Metabolic drivers in aggressive brain tumors

Prabodh Kandala, PhD, RN 11/11/2012

https://pharmaceuticalintelligence.com/2012/11/11/metabolic-drivers-in-aggressive-brain-tumors/

Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

Aviva Lev-Ari, PhD, RN 10/22/2012

https://pharmaceuticalintelligence.com/2012/10/22/metabolite-identification-combining-genetic-and-metabolic-information-genetic-association-links-unknown-metabolites-to-functionally-related-genes/

Advances in Separations Technology for the “OMICs” and Clarification of Therapeutic Targets

Larry H. Bernstein, MD, FCAP, Reporter, RN 10/22/2012

https://pharmaceuticalintelligence.com/2012/10/22/advances-in-separations-technology-for-the-omics-and-clarification-of-therapeutic-targets/

Expanding the Genetic Alphabet and linking the genome to the metabolome

Larry H. Bernstein, MD, FCAP, Reporter, RN 09/24/2012

https://pharmaceuticalintelligence.com/2012/09/24/expanding-the-genetic-alphabet-and-linking-the-genome-to-the-metabolome/

Therapeutic Targets for Diabetes and Related Metabolic Disorders

Aviva Lev-Ari, PhD, RN 08/20/2012

https://pharmaceuticalintelligence.com/2012/08/20/therapeutic-targets-for-diabetes-and-related-metabolic-disorders/

The Automated Second Opinion Generator

Larry H. Bernstein, MD, FCAP, Reporter, RN 08/13/2012

https://pharmaceuticalintelligence.com/2012/08/13/the-automated-second-opinion-generator/

 

Read Full Post »