Feeds:
Posts
Comments

Posts Tagged ‘sperm analysis’

Sperm Analysis by Smart Phone, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Sperm Analysis by Smart Phone

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Low sperm count and motility are markers for male infertility, a condition that is actually a neglected health issue worldwide, according to the World Health Organization. Researchers at Harvard Medical School have developed a very low cost device that can attach to a cell phone and provides a quick and easy semen analysis. The device is still under development, but a study of the machine’s capabilities concludes that it is just as accurate as the elaborate high cost computer-assisted semen analysis machines costing tens of thousands of dollars in measuring sperm concentration, sperm motility, total sperm count and total motile cells.

 

The Harvard team isn’t the first to develop an at-home fertility test for men, but they are the first to be able to determine sperm concentration as well as motility. The scientists compared the smart phone sperm tracker to current lab equipment by analyzing the same semen samples side by side. They analyzed over 350 semen samples of both infertile and fertile men. The smart phone system was able to identify abnormal sperm samples with 98 percent accuracy. The results of the study were published in the journal named Science Translational Medicine.

 

The device uses an optical attachment for magnification and a disposable microchip for handling the semen sample. With two lenses that require no manual focusing and an inexpensive battery, it slides onto the smart phone’s camera. Total cost for manufacturing the equipment: $4.45, including $3.59 for the optical attachment and 86 cents for the disposable micro-fluidic chip that contains the semen sample.

 

The software of the app is designed with a simple interface that guides the user through the test with onscreen prompts. After the sample is inserted, the app can photograph it, create a video and report the results in less than five seconds. The test results are stored on the phone so that semen quality can be monitored over time. The device is under consideration for approval from the Food and Drug Administration within the next two years.

 

With this device at home, a man can avoid the embarrassment and stress of providing a sample in a doctor’s clinic. The device could also be useful for men who get vasectomies, who are supposed to return to the urologist for semen analysis twice in the six months after the procedure. Compliance is typically poor, but with this device, a man could perform his own semen analysis at home and email the result to the urologist. This will make sperm analysis available in the privacy of our home and as easy as a home pregnancy test or blood sugar test.

 

The device costs about $5 to make in the lab and can be made available in the market at lower than $50 initially. This low cost could help provide much-needed infertility care in developing or underdeveloped nations, which often lack the resources for currently available diagnostics.

 

References:

 

https://www.nytimes.com/2017/03/22/well/live/sperm-counts-via-your-cellphone.html?em_pos=small&emc=edit_hh_20170324&nl=well&nl_art=7&nlid=65713389&ref=headline&te=1&_r=1

 

http://www.npr.org/sections/health-shots/2017/03/22/520837557/a-smartphone-can-accurately-test-sperm-count

 

https://www.ncbi.nlm.nih.gov/pubmed/28330865

 

http://www.sciencealert.com/new-smartphone-microscope-lets-men-check-the-health-of-their-own-sperm

 

https://www.newscientist.com/article/2097618-are-your-sperm-up-to-scratch-phone-microscope-lets-you-check/

 

https://www.dezeen.com/2017/01/19/yo-fertility-kit-men-test-sperm-count-smartphone-design-technology-apps/

 

Read Full Post »

Reporter: Sudipta Saha, Ph.D.

Laboratory testing is an integral component of the evaluation of the infertile men. This testing must be appropriate and specific for the individual couple. As there are many tests that evaluate various aspects of infertility, the urologist have to decide what information the tests can offer as well as the limitations of each assay. The semen analysis remains the cornerstone of the evaluation but is not a functional assay. Other assays such as sperm-cervical mucus tests, hemizona assays, and the sperm-penetration assay are functional tests. Through the appropriate use of these and other tests, the urologist will be capable of better and more accurately counseling the infertile couple (http://www.springerlink.com/content/t518435632851834/).

5.3 million American couples of reproductive age (9%) are affected by infertility, among which male factors account for up to 50% of cases, which necessitates the identification of parameters defining sperm quality, including sperm count and motility. In vitro fertilization (IVF) with or without intra cytoplasmic sperm injection (ICSI) has become the most widely used assisted reproductive technology (ART) in modern clinical practice to overcome male infertility challenges. One of the obstacles of IVF and ICSI lies in identifying and isolating the most motile and presumably healthiest sperm from semen samples that have low sperm counts (oligozoospermia) and/or low sperm motility (oligospermaesthenia). Microfluidic systems have shown potential to sort sperm with flow systems. However, the small field of view (FOV) of conventional microscopes commonly used to image sperm motion presents challenges in tracking a large number of sperm cells simultaneously. To address this challenge, Zhang et. al. at Harvard Medical School and MIT integrated a lensless charge-coupled device (CCD) with a microfluidic chip to enable wide FOV and automatic recording as the sperm move inside a microfluidic channel. The integrated system enables the sorting and tracking of a population of sperm that have been placed in a microfluidic channel. This channel can be monitored in both horizontal and vertical configuration similar to a swim up column method used clinically. Sperm motilities can be quantified by tracing the shadow paths for individual sperm. Moreover, as the sperm are sorted by swimming from the inlet towards the outlet of a microfluidic channel, motile sperm that reach the outlet can be extracted from the channel at the end of the process. This technology can lead to methods to evaluate each sperm individually in terms of motility response in a wide field of view, which could prove especially useful, when working with oligozoospermic or oligospermaesthenic samples, in which the most motile sperm need to be isolated from a pool of small number of sperm (http://mit.edu/bammlabs/Lensless_Imaging.pdf).

There are also some new kit based methods developed to analyze male fertility at home. There is no need to count hundreds of sperm in these methods. They are user-friendly, quite affordable (between 40 and 100 dollars) and quick. One of the pioneers on the market is FertilMARQ Home Diagnostic Screening Test, which works by staining the cells in the sperm sample to produce a color. The intensity of this color is then compared to a color reference on the FertilMARQ test cassette providing results with an overall accuracy of 78 percent. Another popular home kit is Spermcheck fertility, known to be 97 percent accurate. This test is based on the detection of SP-10, a protein compound found on the surface of the head of a sperm cell and which concentrations are directly related to the sperm count number (http://howto.wired.com/wiki/Check_a_Man’s_Sperm_Count).

Techniques such as Vasectomy Reversal and Tubal Ligation Reversal, In vitro fertilization (IVF), Intra-cytoplasmic sperm injection (ICSI) have also improved with respect to the instrumentation used. Dr. Sherman J. Silber, M.D. and his Japanese collaborators have recently developed a new “mini-IVF” technique that saves money, eliminates complications of IVF, and is useful for older women and women with low ovarian reserve. (http://www.infertile.com/).

The pioneer company in making the most sophisticated and most popular sperm analysis instrument is Hamilton Thorne (http://www.hamiltonthorne.com/products/casa/systems-index.htm) and their website may be reviewed for more knowledge on modern sperm analysis.

Read Full Post »

%d bloggers like this: