Posts Tagged ‘endocrine response’

Neural Activity Regulating Endocrine Response

Writer and Curator: Larry H. Bernstein, MD, FCAP


Defensive responses of Brandt’s voles (Lasiopodomys brandtii) to chronic predatory stress

Ibrahim M. Hegab, Guoshen Shang, Manhong Ye, Yajuan, et al.
Physiology & Behavior 126 (2014) 1–7

Predator odors are non-intrusive natural stressors of high ethological relevance. The objective of this study was to investigate the processing of a chronic, life-threatening stimulus during repeated prolonged presentation to Brandt’s voles. One hundred and twenty voles were tested by repeated presentation of cat feces in a defensive withdrawal apparatus. Voles exposed to feces for short periods showed more avoidance, more concealment in the hide box, less contact time with the odor source, more freezing behavior, less grooming, more jumping, and more vigilant rearing than did non-exposed voles, and those exposed for longer periods. Serum levels of adrenocortico-tropic hormone and corticosterone increased significantly when animals were repeatedly exposed to cat feces for short periods. The behavioral and endocrine responses  habituated during prolonged presentation of cat feces.  ΔfosB mRNA expression level was highest in voles exposed to cat feces for 6 and 12 consecutive days, and subsequently declined in animals exposed to cat feces for 24 days. We therefore conclude that the behavioral and endocrine responses to repeated exposure to cat feces undergo a process of habituation, while ΔfosB changes in the medial hypothalamic region exhibit sensitization. We propose that habituation and sensitization are complementary rather than contradictory processes that occur in the same individual upon repeated presentation of the same stressor.

Neuroendocrine changes upon exposure to predator odors

Ibrahim M. Hegab, Wanhong Wei
Physiology & Behavior 131 (2014) 149–155

Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are

elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic–pituitary–adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of antipredator responses in prey species.

Involvement of NR1, NR2A different expression in brain regions in anxiety-like behavior of prenatally stressed offspring

Hongli Sun, Ning Jia, Lixia Guan, Qing Su, et al.
Behavioural Brain Research 257 (2013) 1– 7

Prenatal stress (PS) has been shown to be associated with anxiety. However, the underlying neurological mechanisms are not well understood. To determine the effects of PS on anxiety-like behavior in the adult offspring, we evaluated anxiety-like behavior using open field test (OFT) and elevated plus maze (EPM) in the 3-month offspring. Both male and female offspring showed a significant reduction of crossing counts in the center, total crossing counts, rearing counts and time spent in the center in the OFT, and only male offspring showed a decreased percentage of open-arm entries and open-arm time in open arms in the EPM. Additionally, expression of NR1 and NR2A subunit of N-methyl-d-aspartate receptor (NMDAR) in the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR) was studied. Our results showed that PS reduced NR1 and NR2A expression in the HIP, NR2A expression in the PFC and STR in the offspring. The altered NR1 and NR2A could have potential impact on anxiety-like behavior in the adult offspring exposed to PS.

Acute serotonergic treatment changes the relation between anxiety and HPA-axis functioning and periaqueductal gray activation

Dietmar Hestermann, Yasin Temel, Arjan Bloklan, Lee Wei Lim

Serotonergic (5-HT) drugs are widely used in the clinical management of mood and anxiety disorders. However, it is reported that acute 5-HT treatment elicits anxiogenic-like behavior. Interestingly, the periaqueductal gray (PAG), a midbrain structure which regulates anxiety behavior – has robust 5-HT fibers and reciprocal connections with the hypothalamic–pituitary–adrenal (HPA) axis. Although the HPA axis and the 5-HT system are well investigated, the relationship between the stress hormones induced by 5-HT drug treatment
and the PAG neural correlates of the behavior remain largely unknown. In
this study, the effects of acute and chronic treatments with buspirone (BUSP)
and escitalopram (ESCIT) on anxiety related behaviors were tested in an open-
field (OF). The treatment effects on PAG c-Fos immunoreactivity (c-Fos-ir) and corticosterone (CORT) concentration were measured in order to determine the neural endocrine correlates of anxiety-related behaviors and drug treatments. Our results demonstrate that acute BUSP and ESCIT treatments induced anxiogenic behaviors with elevation of CORT compared to the baseline. A decrease of c-Fos-ir was found in the dorsomedial PAG region of both the treatment groups. Correlation analysis showed that the CORT were not associated with the OF anxiogenic behavior and PAG c-Fos-ir. No significant differences were found in behaviors and CORT after chronic treatment.
In conclusion, acute BUSP and ESCIT treatments elicited anxiogenic response with activation of the HPA axis and reduction of c-Fos-ir in the dorsomedial PAG. Although no correlation was found between the stress hormone and
the PAG c-Fos-ir, this does not imply the lack of cause-and-effect relationship between neuroendocrine effects and PAG function in anxiety responses. These correlation studies suggest that the regulation of 5-HT system was probably disrupted by acute 5-HT treatment.

Neuroendocrine mechanisms for immune system regulation during stress in fish

Gino Nardocci,, Cristina Navarro, Paula P. Cortes, Monica Imarai
Fish & Shellfish Immunology 40 (2014) 531e538

In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the “less important” immune function.  Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures
for commercial production.

Stress and immune modulation in fish

Lluis Tort
Developmental and Comparative Immunology 35 (2011) 1366–1375

Stress is an event that most animals experience and that induces a number of responses involving all three regulatory systems, neural, endocrine and immune. When the stressor is acute and short-term, the response pattern is stimulatory and the fish immune response shows an activating phase that specially enhances innate responses. If the stressor is chronic the immune response shows suppressive effects and therefore the chances of an infection may be enhanced. In addition, coping with the stressor imposes an allostatic cost that may interfere with the needs of the immune response. In this paper the mechanisms behind these immunoregulatory changes are reviewed and the role of the main neuroendocrine mechanisms directly affecting the building of the immune response and their consequences are considered.

Stress is a general term proposed by Hans Selye in 1953 (Selye, 1953) applying to a situation in which a person or an animal is subjected to a challenge that may result in a real or symbolic danger for its integrity. The stress response applies to a wide range of physiological mechanisms, including gene and protein changes, metabolism, energetics, immune, endocrine, neural and even behavioral changes that will first try to overcome that situation and then compensate for the imbalances produced by either the stressor or the consequences generated by the first array of responses.

The stress response is a general and widespread reaction in animals and it
may be assumed that this response has common traits along the phylogenetic tree. Thus, responses such as the fight and flight reaction and therefore the repertoire of energetic arrangements to serve the surplus of activity are observed in all animals. For instance, in terms of molecular responses, the increase in heat shock proteins is observed from invertebrates to fish to humans; the induction of acute phase proteins is also a common trait.

Stress and immune response

Stress and immune response

Stress and immune response. Main events regarding the principal hormones and immune mechanisms involved in acute and chronic stress

A variety of immune changes have been described after applying different kinds of stressors in fish. Hence, both activating and suppressive processes have been described following stress episodes, although the majority of changes often result in deleterious effects. Immediate responses during the activation phase enhance innate humoral immunity such as increased levels of lysozyme and C3 proteins after acute stress or the increase of the number of myeloid-type leukocytes in the peritoneum after intraperitoneal bacterial injection. Moreover, glucocorticoid receptor sites increase in head kidney leukocytes after acute handling stress.

Longer term treatments normally show suppressive effects: Sea bass subjected to crowding stress show reduced immunocompetence, as shown by reduced rates of cytotoxicity and chemiluminescence. A decrease of complement activity, lysozyme levels, agglutination activity and antibody titers is observed after 3 days onwards after repeated stress in sea bream. Stress reduces the number of circulating B-lymphocytes, and decreases the antibody response after immunization in vivo.

Effects of cortisol on cell immune responses

Effects of cortisol on cell immune responses

Effects of cortisol on cell immune responses. The arrow indicates permissive and the cross indicates suppressive. Neuroendocrine response to stress after perception by the sensors of the nervous system involves the immediate secretion of corticosteroid releasing hormone (CRH) by the preoptic nucleus of the hypothalamus. The stimulated CRH receptors in the corticotropic cells of the pituitary gland induce release of adrenocorticotropic hormone (ACTH) into the circulation that subsequently stimulates release of cortisol by the head kidney interrenal cells. ACTH as well as melanocyte-stimulating hormone (α-MSH) are derived from cleavage of the pro-opiomelanocortin gene product. In most fishes this hormone releasing sequence is taking place in seconds for CRH, seconds to minutes for ACTH, and minutes for cortisol. Since the effect of corticosteroids is exerted in most tissues, a number of studies looking at the consequences of cortisol release on the immune system have been performed but less work has been done on its precursors.

It is assumed that the nervous system plays a principal role in stress episodes as the main center for sensing the challenge and developing fight-or-flight responses. At the same time, endocrine networks are responsible for a number of responses related to the subsequent reorganization of energetic resources and modification of metabolism. Finally, the immune system is not only activated very early in the time course response but it has been shown to appear as a main partner in the regulatory network that is able to modulate non-specific immediate responses and modify hormonal activity. Therefore, in summary

  • all three regulatory systems have a role in the building of a stress response
    (b) their interaction modulates and fine tunes the initial response to avoid excessive activation and adapting resources to the specific challenge.
    These interactions will not only serve for any particular stress episode but also for adapting and preparing the response for future challenges.

Neural Input Is Critical for Arcuate Hypothalamic Neurons to Mount Intracellular Signaling Responses to Systemic Insulin and Deoxyglucose Challenges in Male Rats: Implications for Communication Within Feeding and Metabolic Control Networks

Arshad M. Khan, Ellen M. Walker, Nicole Dominguez, and Alan G. Watts
Endocrinology 155: 405–416, 2014

The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic

neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic

(CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine

neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-D-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features:

(1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)– immunoreactivity;

(2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2);

(3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and  α-melanocyte-stimulating hormone (αMSH).
Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immune-reactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that

(1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and

(2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH.
These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

Acute hypernatremia dampens stress-induced enhancement of long-term potentiation in the dentate gyrus of rat hippocampus

Chiung-Chun Huang, Chiao-Yin Chu, Che-Ming Yeh , Kuei-Sen Hsu
Psychoneuroendocrinology (2014) 46, 129—140

Stress often occurs within the context of homeostatic threat, requiring integration of physiological and psychological demands to trigger appropriate behavioral, autonomic and endocrine responses. However, the neural mechanism underlying stress integration remains elusive. Using an acute hypernatremic challenge (2.0 M NaCl subcutaneous), we assessed whether physical state may affect subsequent responsiveness to psychogenic stressors. We found that experienced forced swimming (FS, 15 min in 25 8C), a model of psychogenic stress, enhanced long-term potentiation (LTP) induction in the dentate gyrus (DG) of the rat hippocampus ex vivo. The effect of FS on LTP was prevented when the animals were adrenalectomized or given mineralocorticoid receptor antagonist RU28318 before experiencing stress. Intriguingly, relative to normonatremic controls, hypernatremic challenge effectively elevated plasma sodium concentration and dampened FS-induced enhancement of LTP, which was prevented by adrenalectomy. In addition, acute hypernatremic challenge resulted in increased extracellular signal regulated kinase (ERK)1/2 phosphorylation in the DG and occluded the subsequent activation of ERK1/2 by FS. Moreover, stress response dampening effects by acute hypernatremic challenge remained intact in conditional oxytocin receptor knockout mice. These results suggest that acute hypernatremic challenge evokes a sustained increase in plasma corticosterone concentration,

Long-term dysregulation of brain corticotrophin and glucocorticoid receptors and stress reactivity by single early-life pain experience in male and female rats

Nicole C. Victoria, Kiyoshi Inoue, Larry J. Young, Anne Z. Murphy
Psychoneuroendocrinology (2013) 38, 3015—3028

Inflammatory pain experienced on the day of birth (postnatal day 0: PD0) significantly dampens behavioral responses to stress- and anxiety-provoking stimuli in adult rats. However, to date, the mechanisms by which early life pain permanently alters adult stress responses remain unknown. The present studies examined the impact of inflammatory pain, experienced on the day of birth, on adult expression of receptors or proteins implicated in the activation and termination of the stress response, including corticotrophin releasing factor receptors (CRFR1 and CRFR2) and glucocorticoid receptor (GR). Using competitive receptor autoradiography, we show that Sprague Dawley male and female rat pups administered 1% carrageenan into the intraplantar surface of the hindpaw on the day of birth have significantly decreased CRFR1 binding in the basolateral amygdala and midbrain periaqueductal gray in adulthood. In contrast, CRFR2 binding, which is associated with stress termination, was significantly increased in the lateral septum and cortical amygdala. GR expression, measured with in situ hybridization and immunohistochemistry, was significantly increased in the paraventricular nucleus of the hypothalamus and significantly decreased in the hippocampus of neonatally injured adults. In parallel, acute stress-induced corticosterone release was significantly attenuated and returned to baseline more rapidly in adults injured on PD0 in comparison to controls.
Collectively, these data show that early life pain alters neural circuits that regulate responses to and neuroendocrine recovery from stress, and suggest that pain experienced by infants in the Neonatal Intensive Care Unit may permanently alter future responses to anxiety- and stress provoking stimuli.

The Impact of Ventral Noradrenergic Bundle Lesions on Increased IL-1 in the PVN and Hormonal Responses to Stress in Male Sprague Dawley Rats

Peter Blandino Jr, CM Hueston, CJ Barnum, C Bishop, and Terrence Deak
Endocrinology 154: 2489–2500, 2013

The impact of acute stress on inflammatory signaling within the central nervous system is of interest because these factors influence neuroendocrine function both directly and indirectly. Exposure to certain stressors increases expression of the proinflammatory cytokine, Il-1 in the hypothalamus. Increased IL-1 is reciprocally regulated by norepinephrine (stimulatory) and corticosterone (inhibitory), yet neural pathways underlying increased IL-1 have not been clarified.
These experiments explored the impact of bilateral lesions of the ventral noradrenergic bundle (VNAB) on IL-1 expression in the paraventricular nucleus of the hypothalamus (PVN) after foot shock. Adult male Sprague Dawley rats received bilateral 6-hydroxydopamine lesions of the VNAB (VNABx) and were exposed to intermittent foot shock. VNABx depleted approximately 64% of norepinephrine in the PVN and attenuated the IL-1 response produced by foot shock. However, characterization of the hypothalamic-pituitary-adrenal response, a crucial prerequisite for interpreting the effect of VNABx on IL-1 expression, revealed a profound dissociation between ACTH and corticosterone.

Specifically, VNABx blocked the intronic CRH response in the PVN and the increase in plasma ACTH, whereas corticosterone was unaffected at all time points examined. Additionally, foot shock led to a rapid and profound increase in cyclooxygenase-2 and IL-1 expression within the adrenal glands, whereas more subtle effects were observed in the pituitary gland.

Together the findings were

1) demonstration that exposure to acute stress increased expression of inflammatory factors more broadly throughout the hypothalamic-pituitary-adrenal axis;

2) implication of a modest role for norepinephrine-containing fibers of the VNAB as an upstream regulator of PVN IL-1; and

3) suggestion of an ACTH-independent mechanism controlling the release of corticosterone in VNABx rats.

Stress and trauma: BDNF control of dendritic-spine formation and regression

M.R. Bennett,  J. Lagopoulos
Progress in Neurobiology 112 (2014) 80–99

Chronic restraint stress leads to increases in brain derived neurotrophic factor (BDNF) mRNA and protein in some regions of the brain, e.g. the basal lateral amygdala (BLA) but decreases in other regions such as the CA3 region of the hippocampus and dendritic spine density increases or decreases in line with these changes in BDNF. Given the powerful influence that BDNF has on dendritic spine growth, these observations suggest that the fundamental reason for the direction and extent of changes in dendritic spine density in a particular region of the brain under stress is due to the changes in BDNF there. The most likely cause of these changes is provided by the stress initiated release of steroids, which readily enter neurons and alter gene expression, for example that of BDNF. Of particular interest is how glucocorticoids and mineralocorticoids tend to have opposite effects on BDNF gene expression offering the possibility that differences in the distribution of their receptors and of their downstream effects might provide a basis for the differential transcription of the BDNF genes. Alternatively, differences in the extent of methylation and acetylation in the epigenetic control of BDNF transcription
are possible in different parts of the brain following stress. Although present evidence points to changes in BDNF transcription being the major causal agent for the changes in spine density in different parts of the brain following stress, steroids have significant effects on downstream pathways from the TrkB receptor once it is acted upon by BDNF, including those that modulate the density of dendritic spines. Finally, although glucocorticoids play a canonical role in determining BDNF modulation of dendritic spines, recent studies have shown a role for corticotrophin releasing factor (CRF) in this regard. There is considerable improvement in the extent of changes in spine size and density in rodents with forebrain specific knockout of CRF receptor 1 (CRFR1) even when the glucocorticoid pathways are left intact. It seems then that CRF does have a role to play in determining BDNF control of dendritic spines.

Chronic restraint stress leads to increases in brain derived neurotrophic factor (BDNF) mRNA and protein in some regions of the brain, e.g. the basal lateral amygdala (BLA) but decreases in other regions such as the CA3 region of the hippocampus and dendritic spine density increases or decreases in line with these changes in BDNF. Given the powerful influence that BDNF has on dendritic spine growth, these observations suggest that the fundamental reason for the direction and extent of changes in dendritic spine density in a particular region of the brain under stress is due to the changes in BDNF
there. The most likely cause of these changes is provided by the stress initiated release of steroids, which readily enter neurons and alter gene expression, for example that of BDNF. Of particular interest is how glucocorticoids and mineralocorticoids tend to have opposite effects on BDNF gene expression offering the possibility that differences in the distribution of their receptors and of their downstream effects might provide a basis for the differential transcription of the BDNF genes. Alternatively, differences in the extent of methylation and acetylation in the epigenetic control of BDNF transcription are possible in different parts of the brain following stress.

Structure of the rodent BDNF gene

Structure of the rodent BDNF gene

Structure of the rodent BDNF gene. Exons are represented as boxes and the introns as lines. Numbers of the exons are indicated in Roman numerals. The coding exon (exon IX) contains two polyadenylation sites (poly A). The start codon (ATG) that marks the initiation of transcription is indicated. The red box shows the region of exon IX coding for the pro-BDNF protein. Some exons, like exon II and IX, contain different transcript variants with alternative splice-donor sites. Also shown is part of the BDNF exon IV sequence in adults with adverse infant experiences showing cytosine methylation (M) at three of the 12 CG dinucleotide sites (numbered with superscripts). See Boulle et al. (2012).

Epigenetic mechanism associated with repression and activation of BDNF exon IV transcription.

Epigenetic mechanism associated with repression and activation of BDNF exon IV transcription.

Epigenetic mechanism associated with repression and activation of BDNF exon IV transcription. The BDNF exon IV displays 12 distinct CpG sites, which can be methylated and interact selectively with MeCp2 to form complexes that repress gene transcription (see also Fig. 1). Histone methyltransferases (HMT) are responsible for adding methyl groups at histone tails (Panel A), whereas histone deacetylases (HDAC) remove acetylation at histone tails (Panel B), both processes that repress gene transcription. Moreover, low levels of nicotinamine adenine dinucleotide (NAD) promote DNA methylation at the BDNF locus. BDNF gene activation is associated with increased histone H3 and H4 acetylation, which is mediated by histone acetyl transferase (HAT) activity. DNA demethylation might be facilitated by growth arrest and DNA damage proteins such as Gadd45b. An increased binding of CREB to its specific binding protein, CREB binding protein (CBP), is also associated with an increase in BDNF gene transcription. See Boulle et al. (2012).

signaling and epigenetic pathways in granule neurons of the dentate gyrus

signaling and epigenetic pathways in granule neurons of the dentate gyrus

Schematic representation of the signaling and epigenetic pathways in granule neurons of the dentate gyrus thought to be involved in the consolidation process of memory formation after a psychologically stressful challenge. Activation of NMDAR results in stimulation of the MAPK/ERK signaling cascade, the AC /PKA cascade and the CaMKII cascade. In conjunction with activated GR these signaling cascades result in the activation of MSK and ERK leading to the formation of dual histone acetylation marks along the c-Fos promoter and subsequently induction of gene transcription. Signaling via CREB also leads to the same outcome. The induction of gene transcription is thought to be instrumental in the consolidation of memory formation in various stressful learning events. See Trollope et al. (2012).

Model for G9a-GLP complex transcriptional activity in the hippocampus

Model for G9a-GLP complex transcriptional activity in the hippocampus

Model for G9a/GLP complex transcriptional activity in the hippocampus during fear memory consolidation. Shown (panels A and B) is the role of G9a/GLP in the regulation of chromatin remodeling during long-term memory consolidation. Regulation of histone lysine methylation mediates active and repressive transcriptional regulation of genes in the hippocampus. The
changes in chromatin structure results in transcriptional gene silencing in the hippocampus. H3K9me2 dimethylation is associated with transcriptional silencing (not shown). The G9a/GLP complex methyltransferase is specific for producing this modification. Abbreviations: Ac, acetylation; M, methylation; MLLI, histone H3 lysine 4 methyltransferase (which regulates memory formation); H3K9me2, histone H3 lysine 9 dimethylation; HAT, histone acetyltransferase; G9a/GLP, G9a/G9a-like protein (GLP) complex methyltransferase.

Modification of serotonin reuptake transport, with inhibitors such as fluoxetine, augments BDNF exon I mRNA levels in the BLA as well as in the hippocampus. This augmentation is lost and replaced by a decrease in BDNF levels if the mice are homozygous for the BDNF Val66Met SNP. A better outcome is obtained for erasing fear memories in PTSD subjects than using D-cycloserine if a combination is used of extinction training with chronic fluoxetine treatment that augments BDNF exon I mRNA.


The following points are suggested by the present review on identifying the changes in dendritic spine synapses in neural networks under stress, the mechanisms that drive these, and how these networks can be reinstated to normality.

Dendritic spines and BDNF

Activation of BDNF leads to the sprouting of dendrites in many areas of the brain, such as CA1 in the hippocampus. As glucocorticoids decrease BDNF expression they decrease dendritic spine density in these areas . Thus activation of both GR and MR with corticosterone leads to an increase in dendritic spine turnover on pyramidal neurons in these areas. In other areas of the brain glucocorticoids do not have this.  Extinction of a fear memory, such as, of the negative effects of opiate withdrawal, involves increases of BDNF mRNA and protein in the ventromedial prefrontal cortex, through the action of CREB at histone H3 of the BDNF exon I transcript promoter with acetylation of the histone. This could be enhanced before extinction training with histone deacetylase inhibitors such as trichostatin A or inhibitors such as U0126 of ERK.
Major risk factors for PTSD are low levels of cortisol in the blood immediately after the trauma occasion; and before the trauma, in peripheral blood mononuclear cells, the presence of high GR numbers, low FKBP5 expression, and high levels of GILZ mRNA. All of these risk factors are involved in the action of cytoplasmic GR in modulating gene transduction, including most likely that for the BDNF gene, as well as regulating the capacity for BDNF itself to act. This emphasis on GR in PTSD is enforced by the observations that there is an association between two polymorphisms in the GR gene (N363S and Bcl1) and PTSD as there is between that of FKBP5 and GILZ on the one hand and the capacity of GR to modulate gene function on the other.

Brain-derived neurotrophic factor in the amygdala mediates susceptibility to fear conditioning

Dylan Chou, Chiung-Chun Huang, Kuei-Sen Hsu
Experimental Neurology 255 (2014) 19–29

Fear conditioning in animals has been used extensively tomodel clinical anxiety disorders. While individual animals exhibit marked differences in their propensity to undergo fear conditioning, the physiologically relevant mediators have not yet been fully characterized. Here, we demonstrate that C57BL/6 inbred mouse strain subjected to a regimen of chronic social defeat stress (CSDS) can be separated into susceptible and resistant subpopulations that display different levels of fear responses in an auditory fear conditioning  paradigm. Susceptible mice had significantly more c-Fos protein expression
in neurons of the basolateral amygdala (BLA) following CSDS and showed exaggerated conditioned fear responses, while there were no significant differences between groups in innate anxiety- and depressive-like behaviors. Through the use of conditional brain-derived neurotrophic factor (BDNF) knockout strategies, we find that elevated BLA BDNF level following fear conditioning training is a key mediator contributing to determine the levels of conditioned fear responses. Our results also show that relative to susceptible mice, resistant mice had a much faster recovery from conditioned stimuli-induced cardiovascular and corticosterone responses. Systemic administration of norepinephrine reuptake inhibitor atomoxetine increased c-Fos protein expression in BLA neurons following fear conditioning training and promoted the expression of conditioned fear in resistant mice. Conversely, administration of β-adrenergic receptor antagonist propranolol reduced fear conditioning training-induced c-Fos protein expression in BLA neurons and reduced conditioned fear responses in susceptible mice. These findings reveal a novel role for the BDNF signaling within the BLA in mediating individual differences in autonomic, neuroendocrine and behavioral reactivity to fear conditioning.

Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behavior, anorexia and corticosterone secretion

Jing Liu, Jacob C. Garza, Wei Li and Xin-Yun Lu
Intl J Neuropsychopharmacology (2013), 16, 105–120.

The central melanocortin system has been implicated in emotional stress-induced anxiety, anorexia and activation of the hypothalamo-pituitary-adrenal (HPA) axis. However, the underlying neural substrates have not been identified. The medial amygdala (MeA) is highly sensitive to emotional stress and expresses high levels of the melanocortin-4 receptor (MC4R). This study investigated the effects of activation and blockade of MC4R in the MeA
on anxiety-like behavior, food intake and corticosterone secretion. We demonstrate that MC4R-expressing neurons in the MeA were activated by acute restraint stress, as indicated by induction of c-fos mRNA expression. Infusion of a selective MC4R agonist into the MeA elicited anxiogenic-like effects in the elevated plus-maze test and decreased food intake. Local MeA infusion of SHU 9119, an MC4R antagonist, on the other hand, blocked restraint stress-induced anxiogenic and anorectic effects. Moreover, plasma corticosterone levels were increased by intra-MeA infusion of the MC4R agonist under non-stressed conditions and restraint stress-induced elevation of plasma corticosterone levels was attenuated by pretreatment with SHU 9119 in the MeA. Thus, stimulating MC4R in the MeA induces stress-like anxiogenic and anorectic effects as well as activation of the HPA axis, whereas antagonizing MC4R in this region blocks such effects induced by restraint stress. Together, our results implicate MC4R signaling in the MeA in behavioral and endocrine responses to stress.

The neuroendocrine functions of the parathyroid hormone 2 receptor

Arpád Dobolyi, Eugene Dimitrov, Miklós Palkovits and Ted B. Usdin
Front in Endocr Oct 2012 | Volume 3 | Article 121, 1-10

The G-protein coupled parathyroid hormone 2 receptor (PTH2R) is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand, tuberoinfundibular peptide of 39 residues (TIP39), is synthesized in only two brain regions, within the posterior thalamus and the lateral pons.TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state
of animals and their fear response, and increases stress-induced analgesia.

TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine-vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play
a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation ofTIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control neuroendocrine disorders.

Interaction of the Serotonin Transporter-Linked Polymorphic Region and Environmental Adversity: Increased Amygdala-Hypothalamus Connectivity as a Potential Mechanism Linking Neural and Endocrine Hyperreactivity

Nina Alexander, T Klucken, G Koppe, R Osinsky, B Walter, et al.
Biol Psychiatry 2012;72:49–56

Background: Gene by environment (GE) interaction between genetic variation in the promoter region of the serotonin transporter gene (serotonin transporter-linked polymorphic region [5-HTTLPR]) and stressful life events (SLEs) has been extensively studied in the context of depression. Recent findings suggest increased neural and endocrine stress sensitivity as a possible mechanism conveying elevated vulnerability to psychopathology. Furthermore, these GE mediated alterations very likely reflect interrelated biological processes. Methods: In the present functional magnetic resonance imaging study, amygdala reactivity to fearful stimuli was assessed in healthy male adults (n[1]44),who were previously found to differ with regard to endocrine stress reactivity as a function of 5-HTTLPRSLEs. Furthermore, functional connectivity between the amygdala and the hypothalamus was measured as a potential mechanism linking elevated neural and endocrine responses during stressful/threatening situations. The study sample was carefully preselected regarding 5-HTTLPR genotype and SLEs. Results: We report significant GE interaction on neural response patterns and functional amygdala-hypothalamus connectivity. Homozygous carriers of the 5-HTTLPR S’ allele with a history of SLEs (S’S’/high SLEs group) displayed elevated bilateral amygdala activation in response to fearful faces. Within the same sample, a comparable GE interaction effect has previously been demonstrated regarding increased cortisol reactivity, indicating a cross-validation of heightened biological stress sensitivity. Furthermore, S’S’/high SLEs subjects were characterized by an increased functional coupling between the right amygdala and the hypothalamus, thus indicating a potential link between neural and endocrine hyperreactivity.

Amygdala reactivity to fearful faces as a function of the serotonin transporter-linked polymorphic region (5-HTTLPR)

Amygdala reactivity to fearful faces as a function of the serotonin transporter-linked polymorphic region (5-HTTLPR)

Amygdala reactivity to fearful faces as a function of the serotonin transporter-linked polymorphic region (5-HTTLPR) stressful life events (SLEs). The color bar depicts t values for the gene by environment interaction effect. For illustration reasons, the data were thresholded with a t value at 2.5 (see color bar for exact t values).

We report a significant 5-HTTLPRxSLEs interaction effect on bilateral amygdala reactivity to fearful faces in a sample of healthy male adults. As hypothesized, S’S’/high SLEs individuals appeared to be most reactive, which can be interpreted in terms of elevated amygdala reactivity to briefly presented (phasic) aversive stimuli. Interestingly, we have observed a similar response pattern regarding cortisol reactivity to acute stress within the same sample, indicating a cross-validation of neuroendocrine hyperreactivity to threatening/stressful stimuli as a function of 5-HTTLPRxSLEs.

Thus, our results are in line with findings from a small sample sized (n = 15) study reporting a positive association between amygdala reactivity to fearful faces and SLEs in S allele carriers during an unconscious fear processing condition. In contrast, a study using a comparable paradigm and sample size (n = 44) to our own found amygdala activity in the contrast neutral faces versus fixation to be negatively associated with SLEs in S allele carriers. The authors interpret the latter finding in support of a tonic model, by which SLEs interact with 5-HTTLPR on amygdala resting activation. Similar inconsistencies have been reported regarding the association of 5-HTTLPR and amygdala activation independent of environmental adversity, with studies supporting either a phasic or tonic model. Likewise, increased resting blood perfusion in S allele carriers has been reported in independent studies, whereas the largest study
to date could not replicate these findings.

Functional connectivity between the right amygdala as the seed region

Functional connectivity between the right amygdala as the seed region

  • Functional connectivity between the right amygdala as the seed region

(blue circle, right figure) and the hypothalamus (red circles). The middle figure depicts significant differences in activation patterns between the S’S’/high stressful life events (SLEs) and the L’/low SLEs groups and the left figure displays significant differences between S’S’/high SLEs and S’S’/high SLEs subjects. For illustration reasons, threshold was t =2.5 b (below).
(B) Surface plot of functional connectivity at the z-slice location of the peak coordinate. Voxel intensities are given in t values. 5-HTTLPR, serotonin-transporter-linked polymorphic region.

In conclusion, we report increased amygdala responsivity to aversive stimuli in healthy S’S’/high SLEs subjects who have previously been shown to display elevated cortisol secretion in response to psychosocial stress. Thus, our findings contribute to the current debate on potential mechanisms mediating susceptibility for the development of psychiatric disorders as a function of 5-HTTLPRxSLEs. Moreover, the present study extends previous findings by demonstrating altered functional coupling between the amygdala and the hypothalamus, thus indicating a potential link between threat/stress related neural and endocrine alterations associated with 5-HTTLPR x SLEs.

Identifying Molecular Substrates in a Mouse Model of the Serotonin Transporter Environment Risk Factor for Anxiety and Depression


Valeria Carola, Giovanni Frazzetto, Tiziana Pascucci, Enrica Audero, et al.
Biol Psychiatry 2008;63:840–846

Background: A polymorphism in the serotonin transporter (5-HTT) gene modulates the association between adverse early experiences and risk for major depression in adulthood. Although human imaging studies have begun to elucidate the neural circuits involved in the 5-HTT environment risk factor, a molecular understanding of this phenomenon is lacking. Such an understanding might help to identify novel targets for the diagnosis and therapy of mood disorders. To address this need, we developed a gene-environment screening paradigm in the mouse.

Methods: We established a mouse model in which a heterozygous null mutation in 5-HTT moderates the effects of poor maternal care on adult anxiety and depression-related behavior. Biochemical analysis of brains from these animals was performed to identify molecular substrates of the gene, environment, and gene environment effects.

Results: Mice experiencing low maternal care showed deficient ϒ-aminobutyric acid–A receptor binding in the amygdala and 5-HTT  heterozygous null mice showed decreased serotonin turnover in hippocampus and striatum. Strikingly, levels of brain-derived neurotrophic factor (BDNF) messenger RNA in hippocampus were elevated exclusively in 5-HTT heterozygous null mice experiencing poor maternal care, suggesting that developmental programming of hippocampal circuits might underlie the 5-HTT environment risk factor.

Conclusions: These findings demonstrate that serotonin plays a similar role in modifying the long-term behavioral effects of rearing environment in diverse mammalian species and identifies BDNF  as a molecular substrate of this risk factor. In summary, we have produced a mouse model of the 5-HTT environment risk factor for human depression and have used this model to identify molecular substrates underlying this risk factor.

Elevated GABA-A receptor expression in amygdala, decreased 5-HT turnover in hippocampus, and enhanced BDNF expression in hippocampus each correlated significantly with the behavioral phenotype seen in our mice. In particular, increased expression of BDNF in CA1 pyramidal neurons was found in mice with reduced 5-HTT function and exposed to low maternal care. This defect was accompanied by an increased bias in the response to threatening cues as assessed by ambiguous cue fear conditioning.

Our data suggest that alterations in hippocampal gene expression and function underlie at least part of the interaction between 5-HTT and rearing environment and point to a role for this structure in the increased anxiety and depression-related behavior that is a risk factor for major depression.

Gene—environment interactions predict cortisol responses after acute stress: Implications for the etiology of depression

Nina Alexander, Yvonne Kuepper, Anja Schmitz, Roman Osinsky, et al.
Psychoneuroendocrinology (2009) 34, 1294—1303

Background: Growing evidence suggests that the serotonin transporter polymorphism (5-HTTLPR) interacts with adverse environmental influences to produce an increased risk for the development of depression while the underlying mechanisms of this association remain largely unexplored. As one potential intermediate phenotype, we investigated alterations of hypothalamic—pituitary—adrenal (HPA) axis responses to stress in individuals with no history of psychopathology depending on both 5-HTTLPR and stressful life events.

Methods: Healthy male adults (N = 100) were genotyped and completed a questionnaire on severe stressful life events (Life Events Checklist). To test for gene-by-environment interactions on endocrine stress reactivity, subjects were exposed to a standardized laboratory stress task (Public Speaking). Saliva cortisol levels were obtained at 6 time points prior to the stressor and during an extended recovery period.

Results: Subjects homozygous for the s-allele with a significant history of stressful life events exhibited markedly elevated cortisol secretions in response to the stressor compared to all other groups, indicating a significant gene-by-environment interaction on endocrine stress reactivity. No main effect of either 5-HTTLPR (biallelic and triallelic) or stressful life events on cortisol secretion patterns appeared.

Conclusion: This is the first study reporting that 5-HTTLPR and stressful life events interact to predict endocrine stress reactivity in a non-clinical sample. Our results underpin the potential moderating role of HPA-axis hyper-reactivity as a premorbid risk factor to increase the vulnerability for depression in subjects with low serotonin transporter efficiency and a history of severe life events.

The immune system and developmental programming of brain and behavior

Staci D. Bilbo, Jaclyn M. Schwarz
Frontiers in Neuroendocrinology 33 (2012) 267–286

The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone–behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.

Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia

Darrick T. Balua, Joseph T. Coyle
Neuroscience and Biobehavioral Reviews 35 (2011) 848–870

Schizophrenia is a severe mental illness that afflicts nearly 1% of the world’s population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.

Glutamate receptor composition of the post-synaptic density is altered in genetic mouse models of NMDA receptor hypo- and hyperfunction

Darrick T. Balu, Joseph T. Coyle
Brain Research 1392 (2011 ) 1–7

The N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) are ionotropic glutamate receptors responsible for excitatory neurotransmission in the brain. These excitatory synapses are found on dendritic spines, with the abundance of receptors concentrated at the postsynaptic density (PSD).
We utilized two genetic mouse models, the serine racemase knockout (SR−/−) and the glycine transporter subtype 1 heterozygote mutant (GlyT1+/−), to determine how constitutive NMDAR hypo- and hyperfunction, respectively, affect the glutamate receptor composition of the PSD in the hippocampus and prefrontal cortex (PFC).

Using cellular fractionation, we found that SR−/− mice had elevated protein levels of NR1 and NR2A NMDAR subunits specifically in the PSD-enriched fraction from the hippocampus, but not from the PFC. There were no changes in the amounts of AMPAR subunits (GluR1, GluR2), or PSD protein of 95 kDa (PSD95) in either brain region. GlyT1+/− mice also had elevated protein expression of NR1 and NR2A subunits in the PSD, as well as an increase in total protein. Moreover, GlyT1+/− mice had elevated amounts of GluR1 and GluR2 in the PSD, and higher total amounts of GluR1. Similar to SR−/− mice, there were no protein changes observed in the PFC. These findings illustrate the complexity of synaptic adaptation to altered NMDAR function.

Interleukin-1 (IL-1): A central regulator of stress responses

Inbal Goshen, Raz Yirmiya
Frontiers in Neuroendocrinology 30 (2009) 30–45

Ample evidence demonstrates that the pro-inflammatory cytokine interleukin-1 (IL-1), produced following exposure to immunological and psychological challenges, plays an important role in the neuroendocrine and behavioral stress responses. Specifically, production of brain IL-1 is an important link in stress induced activation of the hypothalamus-pituitary-adrenal axis and secretion of glucocorticoids, which
mediate the effects of stress on memory functioning and neural plasticity, exerting beneficial effects at low levels and detrimental effects at high levels. Furthermore, IL-1 signaling and the resultant glucocorticoid secretion mediate the development of depressive symptoms associated with exposure to acute and chronic stressors, at least partly via suppression of hippocampal neurogenesis. These findings indicate
that whereas under some physiological conditions low levels of IL-1 promote the adaptive stress responses necessary for efficient coping, under severe and chronic stress conditions blockade of IL-1 signaling can be used as a preventive and therapeutic procedure for alleviating stress-associated neuropathology
and psychopathology.

IL-1 mediates stress-induced activation of the HPA axis

IL-1 mediates stress-induced activation of the HPA axis

IL-1 mediates stress-induced activation of the HPA axis. Immunological and
psychological stressors increase the levels of IL-1 in various brain areas, including
several brain stem nuclei, the hypothalamus and the hippocampus. In turn, IL-1
induces the secretion of CRH from the hypothalamic paraventricular nucleus (PVN),
ACTH from the pituitary and glucocorticoids from the adrenal. Following immunological
stressors, peripheral IL-1 can directly influence brain stem nuclei, such as
the nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) as well as the
hypothalamus via penetration to adjacent circumventricular organs, (the area
postrema (AP) and the organum vasculosum of the lamina terminalis (OVLT),
respectively). Concomitantly, IL-1 in the periphery can activate vagal afferents,
which innervate and activate the NTS and VLM. These nuclei project to the
hypothalamus, in which the secretion of NE induces further elevation of IL-1 levels,
possibly by microglial activation. Psychological stressors can also activate the NTS
and VLM, either by intrinsic brain circuits or via vagal feedback from physiological
systems (e.g., the cardiovascular system) that are stimulated by the sympathetic
nervous system. Similarly to their role in immunological stress, the NTS and VLM
then elevate hypothalamic IL-1 levels, stimulating the CRH neurons.

The inverted U-shaped effect of IL-1 on memory and plasticity is mediated by glucocorticoids

The inverted U-shaped effect of IL-1 on memory and plasticity is mediated by glucocorticoids

The inverted U-shaped effect of IL-1 on memory and plasticity is mediated by glucocorticoids. The influence of IL-1 on memory and plasticity follows an inverted Ushape pattern, i.e., learning-associated increase in IL-1 levels is needed for memory formation (green), whereas any deviation from the physiological range, either by excess elevation in IL-1 levels or by blockade of IL-1 signaling, results in memory and plasticity impairment (red). Low dose GCs can also facilitate memory, whereas chronic or severe stressors, as well as high GC levels, can impair memory and neural plasticity. Studies on the implications of the interaction between stress, IL-1 and GCs on memory
and plasticity show that IL-1 mediates the detrimental effects of stress on memory, and that GCs are involved in both the detrimental and the beneficial effects of IL-1 on memory formation. Based on these studies, the following model is proposed: stressful stimuli induce an increase in brain IL-1 levels, which in turn contributes to the activation of the HPA axis. Subsequently, the secretion of GCs affects memory and plasticity processes in an inverted U-shaped pattern.

Immune modulation of learning, memory, neural plasticity and neurogenesis

Raz Yirmiya ⇑, Inbal Goshen
Brain, Behavior, and Immunity 25 (2011) 181–213

Over the past two decades it became evident that the immune system plays a central role in modulating learning, memory and neural plasticity. Under normal quiescent conditions, immune mechanisms are activated by environmental/psychological stimuli and positively regulate the remodeling of neural circuits, promoting memory consolidation, hippocampal long-term potentiation (LTP) and neurogenesis.
These beneficial effects of the immune system are mediated by complex interactions among brain cells with immune functions (particularly microglia and astrocytes), peripheral immune cells (particularly T cells and macrophages), neurons, and neural precursor cells. These interactions involve the responsiveness of non-neuronal cells to classical neurotransmitters (e.g., glutamate and monoamines) and hormones
(e.g., glucocorticoids), as well as the secretion and responsiveness of neurons and glia to low levels of inflammatory cytokines, such as interleukin (IL)-1, IL-6, and TNFa, as well as other mediators, such as prostaglandins and neurotrophins. In conditions under which the immune system is strongly activated by infection or injury, as well as by severe or chronic stressful conditions, glia and other brain immune cells change their morphology and functioning and secrete high levels of pro-inflammatory
cytokines and prostaglandins. The production of these inflammatory mediators disrupts the delicate balance needed for the neurophysiological actions of immune processes and produces direct detrimental effects on memory, neural plasticity and neurogenesis. These effects are mediated by inflammation induced neuronal hyper-excitability and adrenocortical stimulation, followed by reduced production of neurotrophins and other plasticity-related molecules, facilitating many forms of neuropathology
associated with normal aging as well as neurodegenerative and neuropsychiatric diseases.

It is now firmly established that the immune system can modulate brain functioning and behavioral processes. This modulation is exerted by plasticity are among the most important aspects of brain functioning that are modulated by immune mechanisms. The aim of the present review is to present a comprehensive and integrative view of the complex dual role of the immune system in learning,memory, neural plasticity and neurogenesis. The first part of the review will focus on the physiological
beneficial effects of the immune system under normal, quiescent conditions. Under such conditions, immune mechanisms are activated by environmental/psychological stimuli and positively regulate neuroplasticity and neurogenesis, promoting learning, memory, and hippocampal long-term potentiation (LTP). The second part of the review will focus on the detrimental effects of inflammatory conditions induced by infections and injury as well as severe or chronic stress, demonstrating that under such
conditions the delicate physiological balance between immune and neural processes is disrupted, resulting in neuronal hyperexcitability, hormonal aberrant ions, reduced neurotrophic factors production and suppressed neurogenesis, leading to impairments in learning, memory and neuroplasticity.

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity. Learning, memory and synaptic plasticity involve neural activation of hippocampal circuits by glutamatergic inputs that originate mainly in multiple cortical areas. Long-term memory consolidation also requires emotional (limbic) activation (particularly of the amygdala and hypothalamus), inducing a mild stressful condition, which in turn results in HPA axis and sympathetic nervous system (SNS) stimulation. The peripheral organs that are the targets of these systems (e.g., the adrenal glad, heart, blood vessels and gastrointestinal (GI) tract), in turn, send afferent inputs to the brain that culminate in stimulation of receptors for glucocorticoids, norepinephrine, dopamine and serotonin on hippocampal cells. These inputs are critical for memory consolidation, neural plasticity and neurogenesis. Furthermore, these inputs induce the production of IL-1, and possibly other cytokines, chemokines and immune mediators in the hippocampus, as well as in other brain areas (such as the hypothalamus and brain stem) that are critically important for neurobehavioral plasticity. Moreover, these cytokines, in turn further activate the HPA axis and SNS, thus participating in a brain-to-body-to-brain reverberating feedback loops.

Chemokines and the hippocampus: A new perspective on hippocampal plasticity and vulnerability

Lauren L. Williamson, Staci D. Bilbo
Brain, Behavior,and Immunity 30(2013)186–194

Chemokines roles within the hippocampus

Chemokines roles within the hippocampus

Chemokines have important roles within the hippocampus and may modulate plasticity and vulnerability within this unique structure. Neuroimmune signaling can occur across the blood-brain-barrier (BBB) via endothelial cells, astrocytes, and microglia within the BBB that recapitulate the immune signal from the periphery by secreting their own cohort of cytokines into the brain. Chemokines recruit cells to sites of injury as well . Microglia receive input from neurons via several membrane-bound and secreted factors, including neuronal CX3CL1 (fractalkine) and its receptor, CX3CR1, on microglia, which allow direct neuroimmune interaction. CXCL12 is released from vesicles concomitantly with GABA from basket cells onto immature neurons in the DG granule cell layer.  In the healthy brain, chemokines may modulate neuronal signaling during behavior, though this phenomenon remains to be explored. The spatial and temporal signaling and cellular sources of chemokines and their receptors are critical for understanding


Read Full Post »