Feeds:
Posts
Comments

Posts Tagged ‘CNN’

Developing Deep Learning Models (DL) for Classifying Emotions through Brainwaves

Reporter: Abhisar Anand, Research Assistant I
Research Team: Abhisar Anand, Srinivas Sriram

2021 LPBI Summer Internship in Data Science and Website construction.
This article reports on a research study conducted till December 2020.
Research completed before the 2021 LPBI Summer Internship began in 6/15/2021.

As the field of Artificial Intelligence progresses, various algorithms have been implemented by researchers to classify emotions from EEG signals. Few researchers from China and Singapore released a paper (“An Investigation of Deep Learning Models from EEG-Based Emotion Recognition”) analyzing different types of DL model architectures such as deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid of CNN and LSTM (CNN-LSTM). The dataset used in this investigation was the DEAP Dataset which consisted of EEG signals of patients that watched 40 one-minute long music videos and then rated them in terms of the levels of arousal, valence, like/dislike, dominance and familiarity. The result of the investigation presented that CNN (90.12%) and CNN-LSTM (94.7%) models had the highest performance out of the batch of DL models. On the other hand, the DNN model had a very fast training speed but was not able to perform as accurately as other other models. The LSTM model was also not able to perform accurately and the training speed was much slower as it was difficult to achieve convergence.

This research in the various model architectures provides a sense of what the future of Emotion Classification with AI holds. These Deep Learning models can be implemented in a variety of different scenarios across the world, all to help with detecting emotions in scenarios where it may be difficult to do so. However, there needs to be more research implemented in the model training aspect to ensure the accuracy of the classification is top-notch. Along with that, newer and more reliable hardware can be implemented in society to provide an easy-to-access and portable EEG collection device that can be used in any different scenario across the world. Overall, although future improvements need to be implemented, the future of making sure that emotions are accurately detected in all people is starting to look a lot brighter thanks to the innovation of AI in the neuroscience field.

Emotions are a key factor in any person’s day to day life. Most of the time, we as humans can detect these emotions through physical cues such as movements, facial expressions, and tone of voice. However, in certain individuals, it can be hard to identify their emotions through their visible physical cues. Recent studies in the Machine Learning and AI field provide a particular development in the ability to detect emotions through brainwaves, more specifically EEG brainwaves. These researchers from across the world utilize the same concept of EEG implemented in AI to help predict the state an individual is in at any given moment.

Emotion classification based on brain wave: a survey (Figure 4)

Image Source: https://hcis-journal.springeropen.com/articles/10.1186/s13673-019-0201-x

EEGs can detect and compile normal and abnormal brain wave activity and indicate brain activity or inactivity that correlates with physical, emotional, and intellectual activities. EEG signals are classified mainly by brain wave frequencies. The most commonly studied are delta, theta, alpha, sigma, and beta waves. Alpha waves, 8 to 12 hertz, are the key wave that occurs in normal awake people. They are the defining factor for the everyday function of the adult brain. Beta waves, 13 to 30 hertz, are the most common type of wave in both children and adults. They are found in the frontal and central areas of the brain and occur at a certain frequency which, if slowed, is likely to cause dysfunction. Theta waves, 4 to 7 hertz, are also found in the front of the brain, but they slowly move backward as drowsiness increases and the brain enters the early stages of sleep. Theta waves are known as active during focal seizures. Delta waves, 0.5 to 4 hertz, are found in the frontal areas of the brain during deep sleep. Sigma waves, 12-16 hertz, are very slow frequency waves that occur during sleep. These EEG signals can help for the detection of emotions based on the frequencies that the signals happen in and the activity of the signals (whether they are active or relatively calm). 

Sources:

Zhang, Yaqing, et al. “An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.” Frontiers in Neuroscience, vol. 14, 2020. Crossref, doi:10.3389/fnins.2020.622759.

Nayak, Anilkumar, Chetan, Arayamparambil. “EEG Normal Waveforms.” National Center for Biotechnology Information, StatPearls Publishing LLC., 4 May 2021, http://www.ncbi.nlm.nih.gov/books/NBK539805.

Other related articles published in this Open Access Online Scientific Journal include the Following:

Supporting the elderly: A caring robot with ‘emotions’ and memory
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2015/02/10/supporting-the-elderly-a-caring-robot-with-emotions-and-memory/

Developing Deep Learning Models (DL) for the Instant Prediction of Patients with Epilepsy
Reporter: Srinivas Sriram, Research Assistant I
https://pharmaceuticalintelligence.com/2021/06/22/developing-deep-learning-models-dl-for-the-instant-prediction-of-patients-with-epilepsy/

Prediction of Cardiovascular Risk by Machine Learning (ML) Algorithm: Best performing algorithm by predictive capacity had area under the ROC curve (AUC) scores: 1st, quadratic discriminant analysis; 2nd, NaiveBayes and 3rd, neural networks, far exceeding the conventional risk-scaling methods in Clinical Use
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2019/07/04/prediction-of-cardiovascular-risk-by-machine-learning-ml-algorithm-best-performing-algorithm-by-predictive-capacity-had-area-under-the-roc-curve-auc-scores-1st-quadratic-discriminant-analysis/

Developing Machine Learning Models for Prediction of Onset of Type-2 Diabetes
Reporter: Amandeep Kaur, B.Sc., M.Sc.
https://pharmaceuticalintelligence.com/2021/05/29/developing-machine-learning-models-for-prediction-of-onset-of-type-2-diabetes/

Deep Learning-Assisted Diagnosis of Cerebral Aneurysms
Reporter: Dror Nir, PhD
https://pharmaceuticalintelligence.com/2019/06/09/deep-learning-assisted-diagnosis-of-cerebral-aneurysms/

Mutations in a Sodium-gated Potassium Channel Subunit Gene related to a subset of severe Nocturnal Frontal Lobe Epilepsy
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2012/10/22/mutations-in-a-sodium-gated-potassium-channel-subunit-gene-to-a-subset-of-severe-nocturnal-frontal-lobe-epilepsy/

A new treatment for depression and epilepsy – Approval of external Trigeminal Nerve Stimulation (eTNS) in Europe
Reporter: Howard Donohue, PhD (EAW)
https://pharmaceuticalintelligence.com/2012/10/07/a-new-treatment-for-depression-and-epilepsy-approval-of-external-trigeminal-nerve-stimulation-etns-in-europe/

Read Full Post »