Prediction of Cardiovascular Risk by Machine Learning (ML) Algorithm: Best performing algorithm by predictive capacity had area under the ROC curve (AUC) scores: 1st, quadratic discriminant analysis; 2nd, NaiveBayes and 3rd, neural networks, far exceeding the conventional risk-scaling methods in Clinical Use
Reporter: Aviva Lev-Ari, PhD, RN
3.2.8 Prediction of Cardiovascular Risk by Machine Learning (ML) Algorithm: Best performing algorithm by predictive capacity had area under the ROC curve (AUC) scores: 1st, quadratic discriminant analysis; 2nd, NaiveBayes and 3rd, neural networks, far exceeding the conventional risk-scaling methods in Clinical Use, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair
Best three machine-learning methods with the best predictive capacity had area under the ROC curve (AUC) scores of
- 0.7086 (quadratic discriminant analysis),
- 0.7084 (NaiveBayes) and
- 0.7042 (neural networks)
- the conventional risk-scaling methods—which are widely used in clinical practice in Spain—fell in at 11th and 12th places, with AUCs below 0.64.
Machine learning to predict cardiovascular risk
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.1111/ijcp.13389
Abstract
Aims
To analyze the predictive capacity of 15 machine learning methods for estimating cardiovascular risk in a cohort and to compare them with other risk scales.
Methods
We calculated cardiovascular risk by means of 15 machine‐learning methods and using the SCORE and REGICOR scales and in 38,527 patients in the Spanish ESCARVAL RISK cohort, with five‐year follow‐up. We considered patients to be at high risk when the risk of a cardiovascular event was over 5% (according to SCORE and machine learning methods) or over 10% (using REGICOR). The area under the receiver operating curve (AUC) and the C‐index were calculated, as well as the diagnostic accuracy rate, error rate, sensitivity, specificity, positive and negative predictive values, positive likelihood ratio, and number of needed to treat to prevent a harmful outcome.
Results
The method with the greatest predictive capacity was quadratic discriminant analysis, with an AUC of 0.7086, followed by NaiveBayes and neural networks, with AUCs of 0.7084 and 0.7042, respectively. REGICOR and SCORE ranked 11th and 12th, respectively, in predictive capacity, with AUCs of 0.63. Seven machine learning methods showed a 7% higher predictive capacity (AUC) as well as higher sensitivity and specificity than the REGICOR and SCORE scales.
Conclusions
Ten of the 15 machine learning methods tested have a better predictive capacity for cardiovascular events and better classification indicators than the SCORE and REGICOR risk assessment scales commonly used in clinical practice in Spain. Machine learning methods should be considered in the development of future cardiovascular risk scales.
This article is protected by copyright. All rights reserved.
SOURCE
Leave a Reply