Reporter: Howard Donohue, PhD (EAW)
Following the arrival in the 1990s of a drug for treating depression called fluoxetine (better known by its brand name, Prozac) – a “selective serotonin reuptake inhibitor” (SSRI) – it’s probably fair to say that not many drugs have become as deeply engrained in the public’s general awareness as those of this type. Perhaps one reason for this could be the sheer number of people affected by depression and to whom SSRIs are relevant as a possible treatment (one study has estimated that depression affected upwards of 30 million Europeans in the year 2010 [1]). Perhaps another reason could be the various controversies that have surrounded SSRIs over the years, from stories of increased suicide risk in children [2] to evidence of biases and the “selective” publishing of clinical data favoring the effectiveness of these drugs [3]. Of course, despite the controversies, SSRIs (along with other classes of antidepressant drug) continue to be a mainstay, but let’s not forget, amid their popularity, that there are other ways to treat depressive illnesses. And in maximizing the benefits of treatment for the individual, it’s important to realize that any one of these approaches might work well for one person, but not for another. Among the non-pharmacologic ways to treat depression are psychological approaches, for example cognitive behavioral therapy, or alternatively, “brain stimulation” approaches such as electroconvulsive therapy (ECT). ECT is a method to induce a mild seizure in the patient by means of electrical activity applied to the brain via electrodes connected to the temples.
On the subject of ECT; you could be forgiven for thinking that it’s not very nice, especially if you’ve seen the plights of characters like Randle Patrick “Mac” McMurphy, portrayed by Jack Nicholson in One Flew Over the Cuckoo’s Nest or Russell Crowe’s portrayal of Dr. John Nash (based on the real-life Nobel Laureate in Economics by the same name) in A Beautiful Mind. Nonetheless, despite the treatment in Hollywood of ECT as a sinister, repressive, and even brutal procedure, the reality is obviously different and it continues to have a place in medical practice for the treatment of severely depressed patients to this day. This isn’t to say that controversies don’t exist within the medical community concerning certain side effects (such as memory loss), but in balancing this, we should remember that many – if not most – medical procedures have their drawbacks (hopefully, the benefits will far outweigh the drawbacks). Putting aside any thoughts on whether ECT is good or bad, it is recognition and consideration of the drawbacks that helps drive the evolution of medical technologies.
So, in illustrating the evolution that is happening in the field of brain stimulation for treating neurological disorders (in this case, depression and also epilepsy), the recent approval in Europe of an “external Trigeminal Nerve Stimulation” (eTNS) technique provides an excellent example. The technique, called the MonarchTM and exclusively licensed to Neurosigma Inc. (a Los Angeles-based medical device company) “for the adjunctive treatment of epilepsy and major depressive disorder, for adults and children 9 years and older”, is a non-invasive form of neuromodulation therapy [4]. It was invented at the University of California, Los Angleles (UCLA) and has been in development for over 10 years [4]. It works by using a low-energy stimulus to stimulate branches of the trigeminal nerve, a nerve that can affect the activity of several key brain regions believed to be involved in depression and epilepsy. In contrast to ECT, the stimulus is restricted to the soft tissues of the forehead without direct penetration to the brain, which thereby facilitates a non-invasive form of neuromodulation [4]. Following European approval, Neurosigma affirmed in a press release that eTNS is “supported by years of safety and compelling efficacy data generated in clinical trials conducted at UCLA and the University of Southern California (USC)” [4]. In realizing the future potential of eTNS, Neurosigma’s business strategy is now geared toward steps for its adoption at major epilepsy and depression centers in the EU, as well as endeavors to make it available to patients in the US and other countries [4].
To answer the question of whether eTNS will rise to prominence as an effective treatment in the fight against depression and epilepsy, only time will tell. But if it does, as well as being a valuable addition to the armamentarium against these debilitating diseases, maybe its non-invasive nature will mean that the film directors have a harder time in “demonizing” it for dramatic effect. Well anyway, let’s hope so.
References
Great Post.
Thank you Dr. Donohue, upon approval by the FDA, the US will be a very big market for it. It reminds me the evolution of biofeedback treatment for ADHD. Noninvasive with some positive results, great hopes given to parents.
This scientific web site has presented other medical devices, priamrily in the treatment of refractory HTN and cardiac repair.
Lev-Ari, A. (2012U). Imbalance of Autonomic Tone: The Promise of Intravascular Stimulation of Autonomics
http://pharmaceuticalintelligence.com/2012/09/02/imbalance-of-autonomic-tone-the-promise-of-intravascular-stimulation-of-autonomics/
Lev-Ari, A. (2012R). Coronary Artery Disease – Medical Devices Solutions: From First-In-Man Stent Implantation, via Medical Ethical Dilemmas to Drug Eluting Stents http://pharmaceuticalintelligence.com/2012/08/13/coronary-artery-disease-medical-devices-solutions-from-first-in-man-stent-implantation-via-medical-ethical-dilemmas-to-drug-eluting-stents/
Lev-Ari, A. (2012K). Percutaneous Endocardial Ablation of Scar-Related Ventricular Tachycardia
http://pharmaceuticalintelligence.com/2012/07/18/percutaneous-endocardial-ablation-of-scar-related-ventricular-tachycardia/
Lev-Ari, A. (2012C). Treatment of Refractory Hypertension via Percutaneous Renal Denervation
http://pharmaceuticalintelligence.com/2012/06/13/treatment-of-refractory-hypertension-via-percutaneous-renal-denervation/
Lev-Ari, A. (2012D). Competition in the Ecosystem of Medical Devices in Cardiac and Vascular Repair: Heart Valves, Stents, Catheterization Tools and Kits for Open Heart and Minimally Invasive Surgery (MIS)
http://pharmaceuticalintelligence.com/2012/06/22/competition-in-the-ecosystem-of-medical-devices-in-cardiac-and-vascular-repair-heart-valves-stents-catheterization-tools-and-kits-for-open-heart-and-minimally-invasive-surgery-mis/
Lev-Ari, A. (2012E). Executive Compensation and Comparator Group Definition in the Cardiac and Vascular Medical Devices Sector: A Bright Future for Edwards Lifesciences Corporation in the Transcatheter Heart Valve Replacement Market
http://pharmaceuticalintelligence.com/2012/06/19/executive-compensation-and-comparator-group-definition-in-the-cardiac-and-vascular-medical-devices-sector-a-bright-future-for-edwards-lifesciences-corporation-in-the-transcatheter-heart-valve-replace/
Lev-Ari, A. (2012F). Global Supplier Strategy for Market Penetration & Partnership Options (Niche Suppliers vs. National Leaders) in the Massachusetts Cardiology & Vascular Surgery Tools and Devices Market for Cardiac Operating Rooms and Angioplasty Suites
http://pharmaceuticalintelligence.com/2012/06/22/global-supplier-strategy-for-market-penetration-partnership-options-niche-suppliers-vs-national-leaders-in-the-massachusetts-cardiology-vascular-surgery-tools-and-devices-market-for-car/
Lev-Ari, A. (2012G). Heart Remodeling by Design: Implantable Synchronized Cardiac Assist Device: Abiomed’s Symphony
http://pharmaceuticalintelligence.com/2012/07/23/heart-remodeling-by-design-implantable-synchronized-cardiac-assist-device-abiomeds-symphony/
Lev-Ari, A. (2006S). First-In-Man Stent Implantation Clinical Trials & Medical Ethical Dilemmas. Bouve College of Health Sciences, Northeastern University, Boston, MA 02115
Thank you Dr Lev Ari – I will look at the articles you suggested.