Reporter: Prabodh Kandala, PhD
The U.S. Food and Drug Administration today approved the production and use of Choline C 11 Injection, a Positron Emission Tomography (PET) imaging agent used to help detect recurrent prostate cancer.
Choline C 11 Injection is administered intravenously to produce an image that helps to locate specific body sites for follow-up tissue sampling and testing in men with recurrent prostate cancer.
PET imaging with Choline C 11 Injection is performed in patients whose blood prostate specific antigen (PSA) levels are increasing after earlier treatment for prostate cancer. An elevated PSA result suggests that prostate cancer may have returned, even though conventional imaging tests, such as computerized tomography (CT), have not shown any signs of cancer. PET imaging is not a replacement for tissue sampling and testing.
Choline C 11 Injection must be produced in a specialized facility and administered to patients shortly after its production. While PET imaging with Choline C 11 Injection has been performed at a few facilities over the past several years, none of these facilities were approved by the FDA to manufacture the agent. The Food and Drug Administration Modernization Act directed the agency to establish appropriate approval procedures and current good manufacturing practice requirements for all PET products marketed and used in the United States. The Mayo Clinic is now the first FDA-approved facility to produce Choline C 11 Injection.
“Choline C 11 Injection provides an important imaging method to help detect the location of prostate cancer in patients whose blood tests suggest recurrent cancer when other imaging tests are negative,” said Charles Ganley, M.D., director of the Office of Drug Evaluation IV in FDA’s Center for Drug Evaluation and Research. “The FDA’s approval of Choline C 11 Injection at the Mayo Clinic provides assurance to patients and health care professionals they are using a product that is safe, effective, and produced according to current good manufacturing practices.”
The safety and effectiveness of Choline C 11 Injection were verified by a systematic review of published study reports. Four independent studies examined a total of 98 patients with elevated blood PSA levels but no sign of recurrent prostate cancer on conventional imaging. After PET imaging with Choline C 11, the patients underwent tissue sampling of the abnormalities detected on the PET scans.
In each of the four studies, at least half the patients who had abnormalities detected on PET scans also had recurrent prostate cancer confirmed by tissue sampling of the abnormal areas. PET scan errors also were reported. Depending on the study, falsely positive PET scans were observed in 15 percent to 47 percent of the patients. These findings underscore the need for confirmatory tissue sampling of abnormalities detected with Choline C 11 Injection PET scans.
Aside from an uncommon, mild skin reaction at the injection site, no side effects to Choline C 11 Injection were reported.
Choline C 11 Injection is manufactured and distributed by the Mayo Clinic PET Radiochemistry Facility in Rochester, Minn
Ref: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm319201.htm
I’m not so impressed with the results of the PET scan. Urologists follow the PSA very carefully after surgical intervention.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette