Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Pharmacotherapy and Cell Activity’


Curator: Aviva Lev-Ari, PhD, RN

We covered the Elevated Blood Pressure and High Adult Arterial Stiffness in the following articles on this Open Access Online Scientific Journal:

Pearlman, JD and A. Lev-Ari 5/24/2013 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

https://pharmaceuticalintelligence.com/2013/05/24/imaging-biomarker-for-arterial-stiffness-pathways-in-pharmacotherapy-for-hypertension-and-hypercholesterolemia-management/

Lev-Ari, A. 5/17/2013 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

https://pharmaceuticalintelligence.com/2013/05/17/synthetic-biology-on-advanced-genome-interpretation-for-gene-variants-and-pathways-what-is-the-genetic-base-of-atherosclerosis-and-loss-of-arterial-elasticity-with-aging/

Bernstein, HL and A. Lev-Ari 5/15/2013 Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems

https://pharmaceuticalintelligence.com/2013/05/15/diagnosis-of-cardiovascular-disease-treatment-and-prevention-current-predicted-cost-of-care-and-the-promise-of-individualized-medicine-using-clinical-decision-support-systems-2/

Pearlman, JD and A. Lev-Ari 5/11/2013 Hypertension and Vascular Compliance: 2013 Thought Frontier – An Arterial Elasticity Focus

https://pharmaceuticalintelligence.com/2013/05/11/arterial-elasticity-in-quest-for-a-drug-stabilizer-isolated-systolic-hypertension-caused-by-arterial-stiffening-ineffectively-treated-by-vasodilatation-antihypertensives/

Pearlman, JD and A. Lev-Ari 5/7/2013 On Devices and On Algorithms: Arrhythmia after Cardiac Surgery Prediction and ECG Prediction of Paroxysmal Atrial Fibrillation Onset

https://pharmaceuticalintelligence.com/2013/05/07/on-devices-and-on-algorithms-arrhythmia-after-cardiac-surgery-prediction-and-ecg-prediction-of-paroxysmal-atrial-fibrillation-onset/

Pearlman, JD and A. Lev-Ari 5/4/2013 Cardiovascular Diseases: Decision Support Systems for Disease Management Decision Making

https://pharmaceuticalintelligence.com/2013/05/04/cardiovascular-diseases-decision-support-systems-for-disease-management-decision-making/

Lev-Ari, A. 5/29/2012 Triple Antihypertensive Combination Therapy Significantly Lowers Blood Pressure in Hard-to-Treat Patients with Hypertension and Diabetes

https://pharmaceuticalintelligence.com/2012/05/29/445/

Lev-Ari, A. 12/31/2012 Renal Sympathetic Denervation: Updates on the State of Medicine

https://pharmaceuticalintelligence.com/2012/12/31/renal-sympathetic-denervation-updates-on-the-state-of-medicine/

Manuela Stoicescu, MD, PhD, 2/9/2013 An Important Marker of Hypertension in Young Adults

https://pharmaceuticalintelligence.com/2013/02/09/an-important-marker-of-hypertension-in-young-adults/

Manuela Stoicescu, MD, PhD, 2/9/2013 Arterial Hypertension in Young Adults: An Ignored Chronic Problem

https://pharmaceuticalintelligence.com/2013/02/09/arterial-hypertension-in-young-adults-an-ignored-chronic-problem/

We present below, a new study on whether elevated pediatric BP could predict high PWV in adulthood and if there is a difference in the predictive ability between the standard BP definition endorsed by the National High Blood Pressure Education Program and the recently proposed 2 simplified definitions.

Simplified Definitions of ElevatedPediatric Blood Pressure and High Adult Arterial Stiffness

  1. Heikki Aatola, MDa,
  2. Costan G. Magnussen, PhDb,c,
  3. Teemu Koivistoinen, MD, MSca,
  4. Nina Hutri-Kähönen, MD, PhDd,
  5. Markus Juonala, MD, PhDb,e,
  6. Jorma S.A. Viikari, MD, PhDe,
  7. Terho Lehtimäki, MD, PhDf,
  8. Olli T. Raitakari, MD, PhDb,g, and
  9. Mika Kähönen, MD, PhDa

+Author Affiliations


  1. aDepartments of Clinical Physiology,

  2. dPediatrics, and

  3. fClinical Chemistry, Fimlab Laboratories, University of Tampere and Tampere University Hospital, Tampere, Finland;

  4. eDepartments of Medicine, and

  5. gClinical Physiology and Nuclear Medicine, and

  6. bthe Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland; and

  7. cMenzies Research Institute Tasmania, University of Tasmania, Tasmania, Australia

ABSTRACT

OBJECTIVE: The ability of childhood elevated blood pressure (BP) to predict high pulse wave velocity (PWV), a surrogate marker for cardiovascular disease, in adulthood has not been reported. We studied whether elevated pediatric BP could predict high PWV in adulthood and if there is a difference in the predictive ability between the standard BP definition endorsed by the National High Blood Pressure Education Program and the recently proposed 2 simplified definitions.

METHODS: The sample comprised 1241 subjects from the Cardiovascular Risk in Young Finns Study followed-up 27 years since baseline (1980, aged 6–15 years). Arterial PWV was measured in 2007 by whole-body impedance cardiography.

RESULTS: The relative risk for high PWV was 1.5 using the simple 1 (age-specific) definition, 1.6 using the simple 2 (age- and gender-specific) definition, and 1.7 using the complex (age-, gender-, and height-specific) definition (95% confidence interval: 1.1–2.0, P = .007; 1.2–2.2, P = .001; and 1.2–2.2, P = .001, respectively). Predictions of high PWV were equivalent for the simple 1 or simple 2 versus complex definition (P = .25 and P = .68 for area under the curve comparisons, P = .13 and P = .35 for net reclassification indexes, respectively).

CONCLUSIONS: Our results support the previous finding that elevated BP tracks from childhood to adulthood and accelerates the atherosclerotic process. The simplified BP tables could be used to identify pediatric patients at increased risk of high arterial stiffness in adulthood and hence to improve the primary prevention of cardiovascular diseases.

Key Words:

  • blood pressure
  • pediatrics
  • prehypertension
  • screening
  • stiffness
  • Abbreviations:
    AUC —
    area under receiver-operating characteristic curve
    BP —
    blood pressure
    CVD —
    cardiovascular diseases
    NHBPEP —
    National High Blood Pressure Education Program
    NPV —
    negative predictive value
    NRI —
    net reclassification improvement
    PPV —
    positive predictive value
    PWV —
    pulse wave velocity
  • Accepted March 12, 2013.

http://pediatrics.aappublications.org/content/early/2013/06/05/peds.2012-3426.abstract?sid=1755f2a0-4e03-4bc8-a563-23458d9dc988

Kids’ High BP Tied to Arterial Stiffness as Adults

By Todd Neale, Senior Staff Writer, MedPage Today

Published: June 10, 2013

Reviewed by Robert Jasmer, MD; Associate Clinical Professor of Medicine, University of California, San Francisco and Dorothy Caputo, MA, BSN, RN, Nurse Planner

High blood pressure in childhood defined in three different ways was associated with high pulse wave velocity — a surrogate marker for cardiovascular disease — 27 years later, researchers found.

The relationship remained significant whether high blood pressure was identified using a complex definition that incorporated age, sex, and height or one of two simplified definitions (relative risk 1.5 to 1.7), according to Mika Kähönen, MD, PhD, of Tampere University Hospital in Finland, and colleagues.

The predictive ability of the two simplified definitions was comparable to that of the more complex definition, the researchers reported online in Pediatrics.

In guidelines published in 2004, the National High Blood Pressure Education Program recommended screening blood pressure at all pediatric visits starting at age 3. The document provides definitions for normal, prehypertensive, and hypertensive blood pressure levels according to age, sex, and height. But including all three of those factors results in hundreds of blood pressure thresholds for patients up to age 17.

Recently, two simplified definitions have been proposed — one that relies only on age and sex and reduces the number of blood pressure thresholds to 64 and another that relies on age alone and reduces the number of thresholds to 10.

“Our results support the previous finding that elevated blood pressure tracks from childhood to adulthood and accelerates the atherosclerotic process,” they wrote. “The simplified blood pressure tables could be used to identify pediatric patients at increased risk of high arterial stiffness in adulthood and hence to improve the primary prevention of cardiovascular diseases.”

“This complex definition could at least partly explain the poor diagnosis of prehypertension and hypertension in children and adolescents reported previously,” Kähönen and colleagues wrote.

The researchers explored the relationship between high blood pressure in childhood and high pulse wave velocity, which is a measure of arterial stiffness, in adulthood, as well as whether the definition of high blood pressure mattered, using 1,241 participants from the Cardiovascular Risk in Young Finns Study.

The participants were 6- to 15-years-old (mean age 10.7) at baseline in 1980. The researchers followed them for 27 years, at which point arterial pulse wave velocity was measured using whole-body impedance cardiography.

At baseline, the percentage of participants who had high blood pressure was 53.9% according to the definition based on age, 57.8% according to the definition based on age and sex, and 43.2% according to the more complex definition recommended in the guidelines.

At the 27-year follow-up assessment, 20% of the participants had a high pulse wave velocity. Compared with those with a low pulse wave velocity, these individuals had significantly higher blood pressure values and higher rates of elevated blood pressure at baseline. The differences widened at the adult follow-up.

Elevated pediatric blood pressure was associated with a greater risk of having a high pulse wave velocity for all three definitions used in the study:

  • Age-based: RR 1.5, 95% CI 1.1-2.0
  • Age- and sex-based: RR 1.6, 95% CI 1.2-2.2
  • Age-, sex-, and height-based: RR 1.7, 95% CI 1.2-2.2

The predictive ability of the definitions were not different from one another, as illustrated by a lack of significant differences when comparing area under the receiving-operating characteristic curves and net reclassification indexes (P>0.1 for all comparisons).

“This finding is clinically meaningful because both these simplified tables could be more easily implemented as a screening tool in pediatric healthcare settings and outside of a physician’s office when the height percentile required for the complex definition may not be obtainable,” the authors wrote.

They acknowledged that their study was potentially limited in that the method for measuring pulse wave velocity is not commonly used in epidemiologic settings. In addition, there could have been bias stemming from participants dropping out during follow-up and generalizability of the findings may be limited to white European individuals.

The study was supported by the Academy of Finland, the Social Insurance Institution of Finland, the Turku University Foundation, the Medical Research Fund of Kuopio University Hospital, the Medical Research Fund of Tampere University Hospital, the Turku University Hospital Medical Fund, the Emil Aaltonen Foundation, the Juha Vainio Foundation, the Finnish Foundation of Cardiovascular Research, the Finnish Cultural Foundation, and The Tampere Tuberculosis Foundation.

The authors reported no conflicts of interest.

From the American Heart Association:

REFERENCES

1. Berenson GS, Srinivasan SR, Bao W, Newman

WP III, Tracy RE, Wattigney WA. Association

between multiple cardiovascular risk factors

and atherosclerosis in children and

young adults. The Bogalusa Heart Study. N

Engl J Med. 1998;338(23):1650–1656

 

2. McGill HC Jr, McMahan CA, Zieske AW,

Malcom GT, Tracy RE, Strong JP. Effects of

nonlipid risk factors on atherosclerosis in

youth with a favorable lipoprotein profile.

Circulation. 2001;103(11):1546–1550

 

3. Raitakari OT, Juonala M, Kähönen M, et al.

Cardiovascular risk factors in childhood and

carotid artery intima-media thickness in

adulthood: the Cardiovascular Risk in Young

Finns Study. JAMA. 2003;290(17):2277–2283

 

4. Hartiala O, Magnussen CG, Kajander S,

et al. Adolescence risk factors are predictive

of coronary artery calcification at

middle age: the cardiovascular risk in

young Finns study. J Am Coll Cardiol. 2012;

60(15):1364–1370

 

5. Wang Y, Beydoun MA. The obesity epidemic

in the United States—gender, age, socioeconomic,

racial/ethnic, and geographic

characteristics: a systematic review and

meta-regression analysis. Epidemiol Rev.

2007;29(1):6–28

 

6. McCrindle BW. Assessment and management

of hypertension in children and adolescents.

Nat Rev Cardiol. 2010;7(3):155–163

 

7. Bao W, Threefoot SA, Srinivasan SR,

Berenson GS. Essential hypertension

predicted by tracking of elevated blood

pressure from childhood to adulthood: the

Bogalusa Heart Study. Am J Hypertens.

1995;8(7):657–665

 

8. Chen X, Wang Y. Tracking of blood pressure

from childhood to adulthood: a systematic

review and meta-regression analysis. Circulation.

2008;117(25):3171–3180

 

9. Juhola J, Magnussen CG, Viikari JS, et al.

Tracking of serum lipid levels, blood pressure,

and body mass index from childhood

to adulthood: the Cardiovascular Risk in

Young Finns Study. J Pediatr. 2011;159(4):

584–590

 

10. National High Blood Pressure Education

Program Working Group on High Blood

Pressure in Children and Adolescents. The

fourth report on the diagnosis, evaluation,

and treatment of high blood pressure in

children and adolescents. Pediatrics. 2004;

114(suppl. 2, 4th report):555–576

 

11. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis

of hypertension in children and

adolescents. JAMA. 2007;298(8):874–879

 

12. Mitchell CK, Theriot JA, Sayat JG, Muchant

DG, Franco SM. A simplified table improves

the recognition of paediatric hypertension.

J Paediatr Child Health. 2011;47(1-2):22–26

 

13. Kaelber DC, Pickett F. Simple table to

identify children and adolescents needing

further evaluation of blood pressure. Pediatrics.

2009;123(6):e972–e974

 

14. Cohn JN, Quyyumi AA, Hollenberg NK,

Jamerson KA. Surrogate markers for cardiovascular

disease: functional markers.

Circulation. 2004;109(25 suppl 1):IV31–IV46

 

15. Vlachopoulos C, Aznaouridis K, Stefanadis

C. Prediction of cardiovascular events and

all-cause mortality with arterial stiffness:

a systematic review and meta-analysis. J

Am Coll Cardiol. 2010;55(13):1318–1327

 

16. Mancia G, De Backer G, Dominiczak A, et al;

The task force for the management of arterial

hypertension of the European Society

of Hypertension; The task force for the

management of arterial hypertension of

the European Society of Cardiology. 2007

guidelines for the management of arterial

hypertension: The task force for the management

of arterial hypertension of the

european society of hypertension (ESH)

and of the European society of cardiology

(ESC). Eur Heart J. 2007;28(12):1462–1536

 

17. Aatola H, Hutri-Kähönen N, Juonala M, et al.

Lifetime risk factors and arterial pulse

wave velocity in adulthood: the cardiovascular

risk in young Finns study. Hypertension.

2010;55(3):806–811

 

18. Aatola H, Koivistoinen T, Hutri-Kähönen N,

et al. Lifetime fruit and vegetable consumption

and arterial pulse wave velocity

in adulthood: the Cardiovascular Risk in

Young Finns Study. Circulation. 2010;122

(24):2521–2528

 

19. Li S, Chen W, Srinivasan SR, Berenson GS.

Childhood blood pressure as a predictor of

arterial stiffness in young adults: the

Bogalusa Heart Study. Hypertension. 2004;

43(3):541–546

 

20. Raitakari OT, Juonala M, Rönnemaa T, et al.

Cohort profile: the cardiovascular risk in

Young Finns Study. Int J Epidemiol. 2008;37

(6):1220–1226

 

21. Uhari M, Nuutinen M, Turtinen J, Pokka T.

Pulse sounds and measurement of diastolic

blood pressure in children. Lancet.

1991;338(8760):159–161

 

22. Tahvanainen A, Koskela J, Tikkakoski A,

et al. Analysis of cardiovascular responses

to passive head-up tilt using continuous

pulse wave analysis and impedance cardiography.

Scand J Clin Lab Invest. 2009;69

(1):128–137

 

23. Kööbi T, Kähönen M, Iivainen T, Turjanmaa V.

Simultaneous non-invasive assessment of

arterial stiffness and haemodynamics—

a validation study. Clin Physiol Funct Imaging.

2003;23(1):31–36

 

24. Koivistoinen T, Kööbi T, Jula A, et al. Pulse

wave velocity reference values in healthy

adults aged 26–75 years. Clin Physiol Funct

Imaging. 2007;27(3):191–196

 

25. Hlatky MA, Greenland P, Arnett DK, et al;

American Heart Association Expert Panel

on Subclinical Atherosclerotic Diseases

and Emerging Risk Factors and the Stroke

Council. Criteria for evaluation of novel

markers of cardiovascular risk: a scientific

statement from the American Heart Association

[published correction appears in

Circulation. 2009;119(25):e606]. Circulation.

2009;119(17):2408–2416

 

26. DeLong ER, DeLong DM, Clarke-Pearson DL.

Comparing the areas under two or more

correlated receiver operating characteristic

curves: a nonparametric approach.

Biometrics. 1988;44(3):837–845

 

27. Pencina MJ, D’Agostino RBS Sr, D’Agostino

RB Jr, Vasan RS. Evaluating the added

predictive ability of a new marker: from

area under the ROC curve to reclassification

and beyond. Stat Med. 2008;27(2):157–

172, discussion 207–212

 

28. Cook NR, Ridker PM. Advances in measuring

the effect of individual predictors of

cardiovascular risk: the role of reclassification

measures. Ann Intern Med. 2009;150

(11):795–802

 

29. Juonala M, Magnussen CG, Venn A, et al.

Influence of age on associations between

childhood risk factors and carotid intimamedia

thickness in adulthood: the Cardiovascular

Risk in Young Finns Study, the

Childhood Determinants of Adult Health

Study, the Bogalusa Heart Study, and the

Muscatine Study for the International Childhood

Cardiovascular Cohort (i3C) Consortium.

Circulation. 2010;122(24):2514–2520

 

30. Sun SS, Grave GD, Siervogel RM, Pickoff AA,

Arslanian SS, Daniels SR. Systolic blood

pressure in childhood predicts hypertension

and metabolic syndrome later in life.

Pediatrics. 2007;119(2):237–246

 

31. Juhola J, Oikonen M, Magnussen CG, et al.

Childhood physical, environmental, and

genetic predictors of adult hypertension:

the cardiovascular risk in young Finns

study. Circulation. 2012;126(4):402–409

 

32. Juonala M, Järvisalo MJ, Mäki-Torkko N,

Kähönen M, Viikari JS, Raitakari OT. Risk

factors identified in childhood and decreased

carotid artery elasticity in adulthood:

the Cardiovascular Risk in Young Finns

Study. Circulation. 2005;112(10):1486–1493

 

33. Zieman SJ, Melenovsky V, Kass DA. Mechanisms,

pathophysiology, and therapy of arterial

stiffness. Arterioscler Thromb Vasc

Biol. 2005;25(5):932–943

 

34. Greenwald SE. Ageing of the conduit

arteries. J Pathol. 2007;211(2):157–172

FUNDING: Supported by the Academy of Finland (grants 77841, 117832, 201888, 121584, and 126925); the Social Insurance Institution of Finland; the Turku University Foundation; the Medical Research Fund of Kuopio University Hospital; the Medical Research Fund of Tampere University Hospital; the Turku University Hospital Medical Fund; the Emil Aaltonen Foundation (T. Lehtimäki); the Juha Vainio Foundation; the Finnish Foundation of Cardiovascular Research; the Finnish Cultural Foundation; and The Tampere Tuberculosis Foundation.

Aatola H, et al “Simplified definitions of elevated pediatric blood pressure and high adult arterial stiffness” Pediatrics2013; DOI: 10.1542/peds.2012-3426.

 

Advertisements

Read Full Post »