Feeds:
Posts
Comments

Posts Tagged ‘adenovirus’


Advances in Gene Editing and Gene Silencing | September 20-21, 2016 | Boston, MA

Kinase Inhibitor Discovery September 21-22, 2016 Boston

KEYNOTE SESSION: GENOME EDITING FOR IN VIVO APPLICATIONS

Part 1 (of a two-part conference) will cover the use of CRISPR/Cas9 and RNAi for identifying new drug targets and therapies. It will bring together experts from all aspects of basic science and clinical research to talk about how and where gene editing and RNAi can be best applied. What are the different tools that can be used and what are their strengths and limitations? How does the CRISPR/Cas system compare to RNAi and other gene editing tools, such as Transcription Activator-like Effector Nucleases (TALENs) and zinc finger nucleases (ZFNs), and do they have any complementary uses? Scientists and clinicians from pharma/biotech as well as from academic and government labs will share their experiences leveraging the utility of gene editing for target discovery, disease modeling, and for creating cell and viral therapies. Learn more atDiscoveryOnTarget.com/RNAi-screens-functional-genomics

Advance Registration Discount Available!
Register by August 12 Week to Save up to $200

Keynote Session: Genome Editing for In Vivo Applications

AAV for Gene Therapy and Genome Editing
James Wilson, M.D., Ph.D., Professor, Department of Pathology and Laboratory Medicine, Perelman School of Medicine; Director, Orphan Disease Center and Director, Gene Therapy Program, University of Pennsylvania
In vivo delivery of nucleic acid therapeutics remains the primary barrier to success. My lab has focused on the use of vectors based on adeno-associated virus (AAV) for achieving success in pre-clinical and clinical applications of gene replacement therapy. Most of the current academic and commercial applications of in vivo gene replacement therapy are based on endogenous AAVs we discovered as latent viral genomes in primates. These vectors are reasonably safe and efficient for application of gene replacement therapy. The emergence of genome editing methods has suggested more precise and effective methods to treat inherited diseases in which genes are silenced or mutations are corrected. AAV vectors have been the most efficient platform for achieving genome editing in vivo. We will review our attempts to achieve therapeutic genome editing in animal models of liver disease using AAV.

Using CRISPR/Cas to Target and Destroy Viral DNA Genomes
Bryan R. Cullen, Ph.D., James B. Duke Professor of Molecular Genetics and Microbiology and Director, Center for Virology, Duke University
A number of pathogenic human DNA viruses, including HBV, HIV-1 and HSV1, cause chronic diseases in humans that remain refractory to cure, though these diseases can be controlled by antivirals. In addition the DNA virus HPV causes tumors that depend on the continued expression of viral genes. Here, I will present data demonstrating that several of these viruses can be efficiently cleaved and destroyed using viral vectors that express Cas9 and virus-specific guide RNAs, thus providing a potential novel approach to treatment.

Targeted Endonucleases as Antiviral Agents: Promises and Pitfalls
Keith R. Jerome, M.D., Ph.D., Member, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Professor and Head, Virology Division, Department of Laboratory Medicine, University of Washington
Genome editing offers the prospect of cure for infections such as HIV, hepatitis B virus, herpes simplex, and human papillomavirus, by disruption of essential viral nucleic acids or the human genes encoding receptors needed for viral entry. This talk will highlight the most recent laboratory data and the challenges still ahead in bringing this technology to the clinic.

Nucleic Acid Delivery Systems for RNA Therapy and Gene Editing
Daniel Anderson, Ph.D., Professor, Department of Chemical Engineering, Institute for Medical Engineering & Science, Harvard-MIT Division of Health Sciences & Technology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
High throughput, combinatorial approaches have revolutionized small molecule drug discovery. Here we describe our high throughput methods for developing and characterizing RNA delivery and gene editing systems. Libraries of degradable polymers and lipid-like materials have been synthesized, formulated and screened for their ability to deliver RNA, both in vitro and in vivo. A number of delivery formulations have been developed with in vivo efficacy, and show potential applications for the treatment of genetic diseases, viral infections and cancers.

PANEL DISCUSSION: CRISPR/Cas: A Realistic and Practical Look at What the Future Could Hold
Moderator: Bryan R. Cullen, Ph.D., James B. Duke Professor of Molecular Genetics and Microbiology and Director, Center for Virology, Duke University
Participants: Session Speakers
Each speaker will spend a few minutes sharing their viewpoints and experiences on where things stand with using the CRISPR/Cas system for in vivo applications. Attendees will have an opportunity to ask questions and share their opinions.

About the Conference

Cambridge Healthtech Institute’s 13th annual two-part conference on Advances in Gene Editing and Gene Silencing will cover the latest in the use of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9-based gene editing and RNA interference (RNAi) for use in drug discovery and for developing novel drug therapies.


For sponsorship and exhibit sales information including podium presentation opportunities, contact:
Jon Stroup | T: +1 781-972-5483 | E: jstroup@healthtech.com


Recommended All Access Package:
Includes access to 1 Symposium and 2 Conferences

September 19 Symposium: 
Understanding CRISPR: Mechanisms and Applications

September 20-21 Conference:
Advances in Gene Editing and Gene Silencing – Part 1

September 21-22 Conference: 
Advances in Gene Editing and Gene Silencing – Part 2


Cambridge Healthtech Institute, 250 First Avenue, Suite 300, Needham, MA, USA

Tel: 781-972-5400 | Fax: 781-972-5425 | www.healthtech.com
This email is being sent to sjwilliamspa@comcast.net for marketing purposes. If it is not of interest to you, please disregard and we apologize for any inconvenience this may have caused.

Read Full Post »


 

AGTC (AGTC) , An adenoviral gene therapy startup, expands in Florida with help from $1 billion deal with Biogen

Reporter: Stephen J. Williams, Ph.D.

from Biospace News

AGTC Sets Up Shop in Florida, New Facility to House 75 Employees
February 17, 2016
By Alex Keown, BioSpace.com Breaking News Staff

GAINESVILLE, Fla. — Applied Genetic Technologies Corporation (AGTC), a biotechnology company researching adeno-associated virus (AAV)-based gene therapies for the treatment of rare diseases, is expanding into the rapidly growing north central Florida biotech corridor.

The company, which was founded on technology developed at the University of Florida, is opening a combined use corporate office and laboratory facility in Alachua, Fla. AGTC’s portion of the new multi-tenant facility is expected to accommodate up to about 75 people and consists of approximately 20,000 square feet including state-of-the-art lab and office space as well as space for future expansion, the company announced this morning.

“The new facility will help us to accelerate our research and development efforts for novel AAV-based gene therapies for rare diseases and house critical corporate functions including finance, quality assurance and project management, while providing ample space as we continue to bring new talent to our team,” Sue Washer, president and chief executive officer of AGTC said in a statement.

AGTC’s lead product candidates focus on X-linked retinoschisis, achromatopsia and X-linked retinitis pigmentosa, which are inherited orphan diseases of the eye, caused by mutations in single genes that significantly affect visual function and currently lack effective medical treatments. Retinoschisis is a condition in which an area of the retina has separated into two layers. The part of the retina that is affected by retinoschisis will have suboptimal vision, according to the University of Michigan’s Kellogg Eye Center. Achromatopsia is a condition of the eye that is characterized by an absence (partial or total) of color vision. People with the complete form of achromatopsia are unable to perceive any colors and can only see black, white and shades of gray.

AGTC is also pursuing pre-clinical development of treatments for wet AMD using the company’s experience in ophthalmology to expand into disease indications with larger markets.

In August, AGTC’s research was bolstered by a $1 billion deal withBiogen (BIIB) to support the company’s gene-based therapies. As part of the deal, Biogen holds a license to AGTC’s XLRS and XLRP programs and an additional three licenses, BioSpace (DHX) reported in August.

David Day, assistant vice president & director of the Office of Technology Licensing at the University of Florida, touted the growth of the biotech sector in north central Florida.

“AGTC’s progress in developing novel treatments for rare diseases without adequate therapeutic options is a particularly good model for the entire biotechnology sector,” Day said in a statement.

Read Full Post »