Selye’s Riddle solved
Larry H. Bernstein, mD, FCAP, Curator
LPBI
Mathematicians Solve 78-year-old Mystery

In previous research, it was suggested that adaptation of an animal to different factors looks like spending of one resource, and that the animal dies when this resource is exhausted. In 1938, Hans Selye introduced “adaptation energy” and found strong experimental arguments in favor of this hypothesis. However, this term has caused much debate because, as it cannot be measured as a physical quantity, adaptation energy is not strictly energy.
Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death
Alexander N. Gorbana, , , Tatiana A. Tyukinaa, , Elena V. Smirnovab, , Lyudmila I. Pokidyshevab,
Highlights
- • We formalize Selye׳s ideas about adaptation energy and dynamics of adaptation.
- • A hierarchy of dynamic models of adaptation is developed.
- • Adaptation energy is considered as an internal coordinate on the ‘dominant path’ in the model of adaptation.
- • The optimal distribution of resources for neutralization of harmful factors is studied.
- • The phenomena of ‘oscillating death’ and ‘oscillating remission’ are predicted.
In previous research, it was suggested that adaptation of an animal to different factors looks like spending of one resource, and that the animal dies when this resource is exhausted.
In 1938, Selye proposed the notion of adaptation energy and published ‘Experimental evidence supporting the conception of adaptation energy.’ Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description.
We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the ‘dominant path’ in the model of adaptation. The phenomena of ‘oscillating death’ and ‘oscillating remission’ are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors.
In this work, an international team of researchers, led by Professor Alexander N. Gorban from the University of Leicester, have developed a solution to Selye’s riddle, which has puzzled scientists for almost 80 years.
Alexander N. Gorban, Professor of Applied Mathematics in the Department of Mathematics at the University of Leicester, said: “Nobody can measure adaptation energy directly, indeed, but it can be understood by its place already in simple models. In this work, we develop a hierarchy of top-down models following Selye’s findings and further developments. We trust Selye’s intuition and experiments and use the notion of adaptation energy as a cornerstone in a system of models. We provide a ‘thermodynamic-like’ theory of organism resilience that, just like classical thermodynamics, allows for economics metaphors, such as cost and bankruptcy and, more importantly, is largely independent of a detailed mechanistic explanation of what is ‘going on underneath’.”
Adaptation energy is considered as an internal coordinate on the “dominant path” in the model of adaptation. The phenomena of “oscillating death” and “oscillating remission,” which have been observed in clinic for a long time, are predicted on the basis of the dynamical models of adaptation. The models, based on Selye’s idea of adaptation energy, demonstrate that the oscillating remission and oscillating death do not need exogenous reasons. The developed theory of adaptation to various factors gives the instrument for the early anticipation of crises.
Professor Alessandro Giuliani from Istituto Superiore di Sanità in Rome commented on the work, saying: “Gorban and his colleagues dare to make science adopting the thermodynamics style: they look for powerful principles endowed with predictive ability in the real world before knowing the microscopic details. This is, in my opinion, the only possible way out from the actual repeatability crisis of mainstream biology, where a fantastic knowledge of the details totally fails to predict anything outside the test tube.1”
Citation: Alexander N. Gorban, Tatiana A. Tyukina, Elena V. Smirnova, Lyudmila I. Pokidysheva. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death. Journal of Theoretical Biology, 2016; DOI:10.1016/j.jtbi.2015.12.017. Voosen P. (2015) Amid a Sea of False Findings NIH tries Reform, The Chronicle of Higher Education.
Leave a Reply