Larry H Bernstein, MD, FCAP, Reporter
Lipid Profile Predicts Metastasis in Breast Cancer
Word Cloud By Danielle Smolyar
Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) and The Institute of Photonic Sciences (ICFO) have collaborated on the development of a diagnostic tool that identifies the metastatic ability of breast cancer cells. The analysis is based on the characterization of the lipid component of the cells, which is indicative of malignancy. This has allowed the researchers to develop a classifier to discriminate cells capable of inducing metastasis. The results of the study have been published in the online version of the scientific journal PLoS ONE.
The characterization of the lipids associated with malignancy has been possible thanks to the technological development of a spectroscopic device named Raman along with the versatility offered by the experimental models of breast cancer. The results of this process form the basis for introducing this technique in routine cytological diagnosis, which could be extended in the future to diagnose other tumors.

English: Breast cancer incidence by age in women in the United Kingdom 2006-2008. Reference: Excel chart for Figure 1.1: Breast Cancer (C50), Average Number of New Cases per Year and Age-Specific Incidence Rates, UK, 2006-2008 at Breast cancer – UK incidence statistics at Cancer Research UK. Section updated 18/07/11. (Photo credit: Wikipedia)
The researchers have analyzed the main components and, partly, the less discriminating ones to assess the profile of the lipid composition of breast cancer cells. They have generated a classification model that segregated metastatic and non-metastatic cells. “The algorithm for the discrimination of the metastatic ability is a first step toward the stratification of breast cancer cells using this quick and reactive tool,” explains the study coordinator, Àngels Sierra, researcher at the Biological Clues of the Invasive and Metastatic Phenotype group of IDIBELL.
Using cytology techniques, the researchers have found a correlation between the activation of lipogenesis (the chemical reaction leading to fatty acids in an organism) and the amount of saturated fats in metastatic cells indicating a worse prognosis and a decreased survival. The lipid content of the breast cancer cells might be a useful measure to determine various functions coupled to the progression of breast cancer. The work has been supported by the Instituto de Salud Carlos III, the former Spanish Ministry of Science and Innovation and the private Cellex Barcelona Foundation.
Related articles
- Technology Developed That Predicts Metastasis In Breast Cancer (medicalnewstoday.com)
- Researchers develop technology that predicts metastasis in breast cancer (medicalxpress.com)
- Lactation protein suppresses tumors and metastasis in breast cancer, scientists discover (medicalxpress.com)
[…] Lipid Profile, Saturated Fats, Raman Spectrosopy, Cancer Cytology […]
[…] Lipid Profile, Saturated Fats, Raman Spectrosopy, Cancer Cytology […]
[…] Cancer Genomics – Leading the Way by Cancer Genomics Program at UC Santa Cruz Closing the gap towards real-time, imaging-guided treatment of cancer patients. Lipid Profile, Saturated Fats, Raman Spectrosopy, Cancer Cytology […]
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.