Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘combination drugs’


Author and Reporter: Anamika Sarkar, Ph.D.

Today, the gold standard treatment for cancer is still chemo therapy or radiation therapy. Drugs are administered to treat patients with different doses, frequencies and combinations. It is recognized that the side effects of all these therapies lead to DNA damage responses (DDR) and their subsequent signaling alterations resulting in cellular functions. Moreover, it is well known that DDR is responsible for complex cross talks and feedback of signaling pathways for progrowth and apoptosis within intracellular as well as extracellular networks (in tissues).

Optimal combinations of drugs in respect of doses or frequencies or order of treatments of different drugs have been recognized as a powerful method of treatment of complex diseases. However, executing experiments of multiple possible combinations of drugs and cell lines can easily lead to very costly proposition. Lee et.al in their paper published in Cell (2012), titled “Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks”, reported from experimental results that when triple negative breast cancer (TNBC) cells are treated, with a combination of drugs  – erlotinib, which is an EGFR inhibitor, at least 4 hours before of another drug, doxorubicin – the cells show higher apoptotic (cell death) responses. Other forms of treatments like, single administration of the drugs or treating the cells together with two drugs at same time, did not show any increased levels of apoptosis in TNBC cells.

They complemented their understanding of reason behind such unique behavior of TNBC cells, when exposed to time -stagger treatment of drugs, with systems level modeling. They used quantitative analysis of high throughput reverse-phase protein microarrays and quantitative western blotting of experiments. They chose to measure activation states of 35 signaling proteins at 12 time points following exposure to ertolinib and doxorubicin individually and in combinations. The authors used PLS (Partial Least Square) and PCA (Principle Component Analysis) methods for predictive analysis from data driven model.

They report from their systems level analysis that time – stagger treatment of TNBC with two drugs ertolinib and doxorubicin activate Caspase 8, a key apoptotic signaling component, which remains absent in other combinations of treatments of drugs. They hypothesized that early treatment of ertolinib, inhibits EGFR responses, which increases levels of activated Caspase 8 and gets amplified after getting exposed to the second drug doxorubicin.

Combination therapy in treating complicated diseases like cancer has many importance in making the dose and treatment efficient. However, due to complex nature of signaling pathways, it poses increasing amount of challenges. Lee et. al., address some of those challenges by bringing in synergistic collaborations among different fields – experiments and mathematical modeling, which is the future of drug development.

Sources:

http://www.ncbi.nlm.nih.gov/pubmed/22579283

Advertisements

Read Full Post »