Feeds:
Posts
Comments

Posts Tagged ‘Nerve cells’

New 3D-printed Device could Help Treat Spinal Cord Injuries

Reporter: Irina Robu, PhD

Every ten minutes, a person is added to the national transplant waiting list in the US alone, where on average 20 people die each day while waiting for a transplant. The shortage of organ donors is not just confined to the US and scientists are turning to technology for help against this worldwide issue.

Bioprinting sounds innovative, but it has a potential to be the next big thing in healthcare and the hope is that printing and transplanting an organ will take a few hours without any risk of rejection from the body. These printed organs are created from the very cells of the body they will re-enter, matching the exact size, specifications and requirements of each individual patient. The artificial creation of human skin, tissue and internal organs sounds like something from the distant future, nevertheless much of it is happening right now in research facilities around the globe and providing new options for treatment.

Medical researchers and engineers at University of Minnesota created a groundbreaking 3-D printed device that could help patients with long term spinal injuries regain some function. A 3-D printed silicone guide, serves as a platform for specialized cells that are then 3-D printed on top of it. The guide would be surgically implanted into the injured area of the spinal cord where it would serve as a “bridge” between living nerve cells above and below the area of injury.

According to Dr. Ann Parr “This is a very exciting first step in developing a treatment to help people with spinal cord injuries.” The expectation is that this would help patients alleviate pain as well as regain some functions like control of muscles, bowel and bladder. In the current experiments developed at University of Minnesota, years, researchers start with any kind of cell from an adult, such as a skin cell or blood cell which then use to reprogram the cells into neuronal stem cells. The engineers print these cells onto a silicone guide using an exclusive 3-D-printing technology in which the same 3-D printer is used to print both the guide and the cells. The guide keeps the cells alive and allows them to change into neurons. The team developed a prototype guide that would be surgically implanted into the damaged part of the spinal cord and help connect living cells on each side of the injury.

Despite all of these complexities, the hardest part of the entire procedure is being able to keep about 75% of cells during the 3-D printing process. But even with the latest technology, developing the prototype guides wasn’t easy. But although the research is very exciting, we need to be careful to offset expectations against reality. While the research still needs more work, there is no doubt that the future of healthcare and medicine will be very different thanks to this research.

SOURCE

https://www.sciencedaily.com/releases/2018/08/180809093429.htm

 

Read Full Post »