Posts Tagged ‘aldosterone’

Adrenal Cortex

Writer and Curator: Larry H Bernstein, MD, FCAP



Anatomy of the Adrenal Glands

The adrenal glands are two, triangular-shaped organs that measure about 1.5 inches in height and 3 inches in length. They are located on top of each kidney. Their name directly relates to their location (ad—near or at; renes—kidneys).

Each adrenal gland is comprised of two distinct structures—the outer part of the adrenal glands is called the adrenal cortex. The inner region is known as the adrenal medulla.

Hormones of the Adrenal Glands

The adrenal cortex and the adrenal medulla have very different functions. One of the main distinctions between them is that the hormones released by the adrenal cortex are necessary for life; those secreted by the adrenal medulla are not.

Adrenal Cortex Hormones

Typically, endocrinologists classify steroid hormones into five groups of molecules, based primarily on the receptor to which they bind:

Glucocorticoids; cortisol is the major representative in most mammals

Mineralocorticoids; aldosterone being most prominent

Androgens such as testosterone

Estrogens, including estrodiol and estrone

Progestogens (also known a progestins) such as progesterone

Corticosteroids: The class of chemicals that includes the steroid hormones that are produced in the adrenal cortex of vertebrates, and synthetic analogues of these hormones. They are involved in the stress response, immune response, and regulation of inflammation, carbohydrate metabolism, protein catabolism, blood electrolyte levels, and behavior.

The adrenal cortex produces two main groups of corticosteroid hormones—glucocorticoids and mineralocorticoids. The release of glucocorticoids is triggered by the hypothalamus and pituitary gland. Mineralocorticoids are mediated by signals triggered by the kidney.

When the hypothalamus produces corticotrophin-releasing hormone (CRH), it stimulates the pituitary gland to release adrenal corticotrophic hormone (ACTH). These hormones, in turn, alert the adrenal glands to produce corticosteroid hormones.

Glucocorticoids such as cortisol control carbohydrate, fat and protein metabolism, and are anti-inflammatory.

Glucocorticoids released by the adrenal cortex include:

Hydrocortisone: Commonly known as cortisol regulates how the body converts fats, proteins, and carbohydrates to energy. It also helps regulate blood pressure and cardiovascular function.

Corticosterone: This hormone works with hydrocortisone to regulate immune response and suppress inflammatory reactions.

Mineralocorticoids such as aldosterone control electrolyte and water levels, mainly by promoting sodium retention in the kidney, thereby maintaining the right balance of salt and water while helping control blood pressure.

There is a third class of hormone released by the adrenal cortex in small amounts is sex steroids or sex hormones – primarily released by the testes or ovaries
(estrogen and testosterone) under the influence of gonadotrophic hormone.

Class of Steroid Major Representative Physiologic Effects
Mineralocorticoids Aldosterone Na+, K+ and water homeostasis
Glucocorticoids Cortisol Glucose homeostasis and many others

Adrenal Corticosteroids Animation

Like all steroids, adrenal “corticosteroids” are synthesized from cholesterol through a series of enzyme-mediated transformations. The details of these pathways are presented elsewhere, but the major branches are easy to understand.

steroid synthesis

steroid synthesis


The basic cyclopentanoperhydrophenanthrene ring structure and carbon numbering system of all steroid hormones is depicted to the right, using pregnenolone as an example. Pregnenolone is an example of what is called a “C-21 steroid” because it has 21 carbons. Similarly, a steroid such as testosterone (see below) is referred to as a “C-19 steroid”.



Common name “Old” name Current name
Side-chain cleavage enzyme; desmolase P450SCC CYP11A1
3 beta-hydroxysteroid dehydrogenase 3 beta-HSD 3 beta-HSD
17 alpha-hydroxylase/17,20 lyase P450C17 CYP17
21-hydroxylase P450C21 CYP21A2
11 beta-hydroxylase P450C11 CYP11B1
Aldosterone synthase P450C11AS CYP11B2
Aromatase P450aro CYP19

Biosynthesis of steroid hormones requires a battery of oxidative enzymes located in both mitochondria and endoplasmic reticulum. The rate-limiting step in this process is the transport of free cholesterol from the cytoplasm into mitochondria. Within mitochondria, cholesterol is converted to pregnenolone by an enzyme in the inner membrane called CYP11A1. Pregnenolone itself is not a hormone, but is the immediate precursor for the synthesis of all of the steroid hormones. The following table delineates the enzymes required to synthesize the major classes of steroid hormones.

The biosynthetic pathways for major representatives of these classes of steroid hormones is depicted in the following diagram.

major pathways of steroid synthesis

major pathways of steroid synthesis

Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor

Inez Rogatsky, Jen-Chywan Wang, Mika K. Derynck, Daisuke F. Nonaka, et al.
PNAS [1] Nov 25, 2003; 100(24): 13845–13850

The glucocorticoid receptor (GR) activates or represses transcription depending on the sequence and architecture of the glucocorticoid response elements in target genes and the availability and activity of interacting cofactors. Numerous GR cofactors have been identified, but they alone are insufficient to dictate the specificity of GR action. Furthermore, the role of different functional surfaces on the receptor itself in regulating its targets is unclear, due in part to the paucity of known target genes. Using DNA microarrays and real-time quantitative PCR, we identified genes transcriptionally activated by GR, in a translation-independent manner, in two human cell lines. We then assessed in U2OS osteosarcoma cells the consequences of individually disrupting three GR domains, the N-terminal activation function (AF) 1, the C-terminal AF2, or the dimer interface, on activation of these genes. We found that GR targets differed in their requirements for AF1 or AF2, and that the dimer interface was dispensable for activation of some genes in each class. Thus, in a single cell type, different GR surfaces were used in a gene-specific manner. These findings have strong implications for the nature of gene response element signaling, the composition and structure of regulatory complexes, and the mechanisms of context-specific transcriptional regulation.

Promoter-specific relevance of histone modifications induced by dexamethasone during the regulation of pro-inflammatory mediators

Linda Palma, Stefano Amatori, Ivan Cruz Chamorroa, Mirco Fanelli, Mauro Magnani
Biochimica et Biophysica Acta 1839 (2014) 571–578

Glucocorticosteroids (GCs) are widely used to treat different kinds of chronic inflammatory and immune diseases through transcriptional regulation of inflammatory genes.
Modulation of gene expression by GCs is known to occur through diverse mechanisms of varying relevance to specific classes of genes. Epigenetic modifications are indeed a pivotal regulatory feature of glucocorticoid receptor and other transcription factors.
In this study, histone post-translational modifications were investigated for their involvement in the regulation of selected pro-inflammatory genes – expressed in human monocyte-derived macrophages – in response to treatment with synthetic GC dexamethasone (DEX). We show that histone tail acetylation status is modified following DEX administration, through distinct and alternative mechanisms at the promoters of interleukin-8 and interleukin-23. In addition to histone H3 acetylation, our results demonstrate that H3 lysine 4 trimethylation is affected following drug treatment.
The CYP11B subfamily

Lina Schiffer, S Anderko, F Hannemann, A Eiden-Plach, R Bernhardt
Journal of Steroid Biochemistry & Molecular Biology xxx (2014) xxx–xxx

The biosynthesis of steroid hormones is dependent on P450-catalyzed reactions. In mammals, cholesterol is the common precursor of all steroid hormones, and its conversion to pregnenolone is the initial and rate-limiting step in hormone biosynthesis in steroidogenic tissues such as gonads and adrenal glands. The production of glucocorticoids and mineralocorticoids takes place in the adrenal gland and the final steps are catalyzed by 2 mitochondrial cytochromes P450, CYP11B1 (11b-hydroxylase or P45011b) and CYP11B2 (aldosterone synthase or P450aldo). The occurrence and development of these 2 enzymes in different species, their contribution to the biosynthesis of steroid hormones as well as their regulation at different levels (gene expression, cellular regulation, regulation on the level of proteins) is the topic of this chapter
Two-pore domain potassium channels in the adrenal cortex

Sascha Bandulik, Philipp Tauber, Enzo Lalli, Jacques Barhanin & Richard Warth
Pflugers Arch – Eur J Physiol Oct 2014

The physiological control of steroid hormone secretion from the adrenal cortex depends on the function of potassium channels. The “two-pore domain K+ channels” (K2P) TWIK-related acid sensitive K+ channel 1 (TASK1), TASK3, and TWIK-related K+ channel 1 (TREK1) are strongly expressed in adrenocortical cells. They confer a background K+ conductance to these cells which is important for the K+ sensitivity as well as for angiotensin II and adrenocorticotropic hormone-dependent stimulation of aldosterone and cortisol synthesis. Mice with single deletions of the Task1 or Task3 gene as well as Task1/Task3 double knockout mice display partially autonomous aldosterone synthesis. It appears that TASK1 and TASK3 serve different functions: TASK1 affects cell differentiation and prevents expression of aldosterone synthase in the zona fasciculata, while TASK3 controls aldosterone secretion in glomerulosa cells. TREK1 is involved in the regulation of cortisol secretion in fasciculata cells. These data suggest that a disturbed function of K2P channels could contribute to adrenocortical pathologies in humans.

Visinin-like peptide 1 in adrenal gland of the rat. Gene expression andits hormonal control

Marcin Trejter, A Hochol, M Tyczewska, A Ziolkowska, K Jopek, et al.
Peptides 63 (2015) 22–29

tVSNL1 encodes the calcium-sensor protein visinin-like 1 and was identified previously as an upregulated gene in a sample set of aldosterone-producing adenomas. Recently, by means of microarray studies we demonstrated high expression of Vsnl1 gene in rat adrenal zona glomerulosa (ZG).  Only scanty data are available on the role of this gene in adrenal function as well as on regulation of its expression by factors affecting adrenal cortex structure and function. Therefore we performed relevant studies aimed at clarifying some of the above issues. By Affymetrix®Rat Gene 1.1 ST Array Strip, QPCR and immunohistochemistry we demonstrated that expression levels of Vsnl1 in the rat adrenal ZG are notably higher than in the fasciculata/reticularis zone. In QPCR assay this difference was approximately 10 times higher. Expression of this gene in the rat adrenal gland or adrenocortical cells was acutely down regulated by ACTH, while chronic administration of corticotrophin or dexamethasone did not change Vsnl1 mRNAlevels. In enucleation-induced adrenocortical regeneration expression levels of both Vsnl1 and Cyp11β2 were notably lowered and positively correlated. Despite these findings, the physiological significance of adrenal Vsnl1 remains unclear, and requires further investigation.
Sox2 Acts in a Dose-Dependent Fashion to Regulate Proliferation of Cortical Progenitors

Daniel W. Hagey, Jonas Muhr
Hagey & Muhr, 2014, Cell Reports 9, 1908–1920

Hagey and Muhr show that high levels of Sox2 maintain stem cells of the developing cortex in a slowly self-renewing state by directly repressing cell-cycle genes. They further demonstrate that proneural protein-induced commitment to differentiation induces a rapidly dividing state via the reduction of Sox2 expression levels.

A slow-cycling stem cell state is demarcated by high levels of Sox2 in the cortex

Proneural bHLHs repress Sox2 levels as a prerequisite to commit cells to proliferation

Regulatory DNA regions interpret Sox2 levels via high- and low affinity motifs

Sox2 represses Cyclin D1 in synergy with Tcf/Lef through the recruitment of Gro/Tle
reduction of Sox2 expression

reduction of Sox2 expression

reduction of Sox2 expression

Silencing diacylglycerol kinase-theta expression reduces steroid hormone biosynthesis and cholesterol metabolism in human adrenocortical cells

Kai Cai, Natasha C. Lucki, Marion B. Sewer
Biochimica et Biophysica Acta 1841 (2014) 552–562

Diacylglycerol kinase theta (DGKθ) plays a pivotal role in regulating adrenocortical steroidogenesis by synthesizing the ligand for the nuclear receptor steroidogenic factor 1 (SF1). In response to activation of the cAMP signaling cascade nuclear DGK activity is rapidly increased, facilitating PA-mediated, SF1-dependent transcription of genes required for cortisol and dehydroepiandrosterone (DHEA) biosynthesis. Based on our previous work identifying DGKθ as the enzyme that produces the agonist for SF1, we generated a tetracycline-inducible H295R stable cell line to express a short hairpin RNA (shRNA) against DGKθ and characterized the effect of silencing DGKθ on adrenocortical gene expression. Genome-wide DNA microarray analysis revealed that silencing DGKθ expression alters the expression of multiple genes, including steroidogenic genes, nuclear receptors and genes involved in sphingolipid, phospholipid and cholesterol metabolism. Interestingly, the expression of sterol regulatory element binding proteins (SREBPs) was also suppressed. Consistent with the suppression of SREBPs, we observed a down-regulation of multiple SREBP target genes, including 3-hydroxy-3-methylglutaric coenzyme A reductase (HMG-CoA red) and CYP51, concomitant with a decrease in cellular cholesterol. DGKθ knockdown cells exhibited a reduced capacity to metabolize PA, with a down-regulation of lipin and phospholipase D (PLD) isoforms. In contrast, suppression of DGKθ increased the expression of several genes in the sphingolipid metabolic pathway, including acid ceramidase (ASAH1) and sphingosine kinases (SPHK). In summary, these data demonstrate that DGKθ plays an important role in steroid hormone production in human adrenocortical cells.
Origin of the response to adrenal and sex steroids: Roles of promiscuity and co-evolution of enzymes and steroid receptors

Michael E. Baker, David R. Nelson, Romain A. Studer
Journal of Steroid Biochemistry & Molecular Biology xxx (2015) xxx–xxx

Many responses to adrenal and sex steroids are mediated by receptors that belong to the nuclear receptor family of transcription factors. We investigated the co-evolution of these vertebrate steroid receptors and the enzymes that synthesize adrenal and sex steroids through data mining of genomes from cephalochordates [amphioxus], cyclostomes [lampreys, hagfish], chondrichthyes [sharks, rays, skates], actinopterygii [ray-finned fish], sarcopterygii [coelacanths, lungfishes and terrestrial vertebrates]. An ancestor of the estrogen receptor and 3-ketosteroid receptors evolved in amphioxus. A corticoid receptor and a progesterone receptor evolved in cyclostomes, and an androgen receptor evolved in gnathostomes. Amphioxus contains CYP11, CYP17, CYP19, 3b/D5–4-HSD and 17b-HSD14, which suffice for the synthesis of estradiol and D5-androstenediol. Amphioxus also contains CYP27, which catalyzes the synthesis of 27-hydroxy-cholesterol, another estrogen. Lamprey contains, in addition, CYP21, which catalyzes the synthesis of 11-deoxycortisol. Chondrichthyes contain, in addition, CYP11A, CYP11C, CYP17A1, CYP17A2. Coelacanth also contains CYP11C1, the current descendent from a common ancestor with modern land vertebrate CYP11B genes, which catalyze the synthesis of cortisol, corticosterone and aldosterone. Interestingly, CYP11B2, aldosterone synthase, evolved from separate gene duplications in at least old world monkeys and two suborders of rodents. Sciurognathi (including mice and rats) and Hystricomorpha (including guinea pigs). Thus, steroid receptors and steroidogenic enzymes co-evolved at key transitions in the evolution of vertebrates. Together, this suite of receptors and enzymes through their roles in transcriptional regulation of reproduction, development, homeostasis and the response to stress contributed to the evolutionary diversification of vertebrates. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’.
Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies

Charles Finsterwald, Cristina M. Alberini
Neurobiology of Learning and Memory 112 (2014) 17–29

A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic–pituitary–adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of strong long-term memories because the activation of hippocampal GRs after learning is coupled to the recruitment of the growth and pro-survival BDNF/cAMP response element-binding protein (CREB) pathway, which is well-known to be a general mechanism required for long-term memory formation. We will then speculate about how these results may explain the negative effects of traumatic or chronic stress on memory and cognitive functions.

Autophagy in the endocrine glands

Andrea Weckman, Antonio Di Ieva, Fabio Rotondo, Luis V Syro, Leon D Ortiz, et al.
Journal of Molecular Endocrinology (2014) 52, R151–R163

Autophagy is an important cellular process involving the degradation of intracellular components. Its regulation is complex and while there are many methods available, there is currently no single effective way of detecting and monitoring autophagy. It has several cellular functions that are conserved throughout the body, as well as a variety of different physiological roles depending on the context of its occurrence in the body. Autophagy is also involved in the pathology of a wide range of diseases. Within the endocrine system, autophagy has both its traditional conserved functions and specific functions. In the endocrine glands, autophagy plays a critical role in controlling intracellular hormone levels. In peptide-secreting cells of glands such as the pituitary gland, crinophagy, a specific form of autophagy, targets the secretory granules to control the levels of stored hormone. In steroid-secreting cells of glands such as the testes and adrenal gland, autophagy targets the steroid-producing organelles. The dysregulation of autophagy in the endocrine glands leads to several different endocrine diseases such as diabetes and infertility. This review aims to clarify the known roles of autophagy in the physiology of the endocrine system, as well as in various endocrine diseases.
Angiotensin IV stimulates high atrial stretch-induced ANP secretionvia insulin regulated aminopeptidase

Byung Mun Park, Seung Ah Cha, Bo Ram Han, Suhn Hee Kim
Peptides 63 (2015) 30–37

tAngiotensin IV (Ang IV) is formed by aminopeptidase N (APN) from angiotensin III (Ang III) by remov-ing the first N-terminal amino acid. Previouslt, we reported that angiotensin II (Ang II) inhibits atrialnatriuretic peptide (ANP) secretion via angiotensin II type 1 receptor (AT1R). In contrast, angiotensin-(1–7) [Ang-(1–7)] and Ang III stimulate ANP secretion via Mas receptor (Mas R) and angiotensin II type 2receptor (AT2R), respectively. However, it is not known whether there is any relationship between AngIV and ANP secretion. Therefore, the aim of the present study was to determine the effect of Ang IV onANP secretion and to find its downstream signaling pathway using in isolated perfused beating atria. AngIV (0.1, 1 and 10 [1]M) stimulated high atrial stretch-induced ANP secretion and ANP concentration in adose-dependent manner. The augmented effect of Ang IV (1 [1]M) on high atrial stretch-induced ANP secre-tion and concentration was attenuated by pretreatment with insulin-regulated aminopeptidase (IRAP)antagonist but not by AT1R or AT2R antagonist. Pretreatment with inhibitors of downstream signalingpathway including phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and mammalian targetof rapamycin (mTOR) blocked Ang IV-induced ANP secretion and concentration. Therefore, these results suggest that Ang IV stimulates ANP secretion and concentration via IRAP and PI3K-Akt-mTOR pathway.
Adrenal cortex tissue homeostasis and zonation: A WNT perspective

Coralie Drelon, Annabel Berthon, Mickael Mathieu, Antoine Martinez, Pierre Val
Molecular and Cellular Endocrinology ■■ (2015) ■■–■■

The adrenal cortex plays essential roles in the control of sodium and water homeostasis, stress response, inflammation and metabolism, through secretion of glucocorticoids and mineralocorticoids. Coordinated production of these hormones relies on functional zonation of the cortex, characterized by expression of Cyp11b2 under the control of angiotensin II and plasma potassium level in zona glomerulosa (ZG) and Cyp11b1 under the control of ACTH in zona fasciculata (ZF). The mechanisms involved in the establishment of functional zonation and its maintenance during centripetal cortex cell renewal are still poorly understood. Here, we hypothesize that the hormonal and signaling pathways that control adrenal cortex function are also involved in cortical zonation. In particular, we summarize evidence on the role of WNT/β-catenin signaling in ZG differentiation and how tight control of its activity is required to shape the adult cortex. In this context, we discuss the potential role of known WNT regulators and the possibility of a reciprocal cross-talk between PKA and WNT signaling.
Acute and chronic stress induced changes in sensitivity of peripheral inflammatory pathways to the signals of multiple stress systems — 2011 Curt Richter Award Winner

Nicolas Rohleder
Psychoneuroendocrinology (2012) 37, 307—316

Exposure to psychosocial stress has been associated with increasing rates of morbidity in humans and in animal models, but the underlying mechanisms are not completely understood. Major stress responsive systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system (ANS) are under investigation as underlying pathways, but although acute stress reliably activates these systems, findings of long-term alternations in baseline activity are inconsistent at present. Emerging evidence suggests that stress-related changes in the sensitivity of target systems toward glucocorticoid (GC) regulation, i.e. development of GC resistance, might help explain inflammatory disinhibition and development of disease related to inflammation. More recent findings further show that the autonomic nervous system might play an important role in the regulatory control of the inflammatory cascade. The major argument put forward in this manuscript is that target tissues for stress system modulation, such as the inflammatory cascade, vary in their ability to respond to stress system signaling, and that assessing alterations in this stress signal sensitivity which can be caused by stress or disease processes, might be necessary to understand and explain stress effects on health. This review focuses on the inflammatory system in particular, because anti-inflammatory effects of most stress systems have been documented, but the general assumption might have to be generalized to other target systems. The main conclusion to be made is that reduction in glucocorticoid sensitivity of target tissues is the most consistent finding at present, and that assessing such changes in glucocorticoid sensitivity might be necessary to understand many stress-related changes in physiology.

Adrenal insufficiency

Evangelia Charmandari, Nicolas C Nicolaides, George P Chrousos
The Lancet  Jun 21, 2014; 383: 2152-2167

Adrenal insufficiency is the clinical manifestation of deficient production or action of glucocorticoids, with or without deficiency also in mineralocorticoids and adrenal androgens. It is a life-threatening disorder that can result from primary adrenal failure or secondary adrenal disease due to impairment of the hypothalamic–pituitary axis. Prompt diagnosis and management are essential. The clinical manifestations of primary adrenal insufficiency result from deficiency of all adrenocortical hormones, but they can also include signs of other concurrent autoimmune conditions. In secondary or tertiary adrenal insufficiency, the clinical picture results from glucocorticoid deficiency only, but manifestations of the primary pathological disorder can also be present. The diagnostic investigation, although well established, can be challenging, especially in patients with secondary or tertiary adrenal insufficiency. We summarize knowledge at this time on the epidemiology, causal mechanisms, pathophysiology, clinical manifestations, diagnosis, and management of this disorder.

Molecular immunopathogenesis of primary adrenal insufficiency

A persistent subclinical viral infection or an aberrant response to inflammatory stressors could cause adrenocortical cell apoptosis or necrosis, leading to dendritic-cell activation by cellular components, including peptides derived from 21-hydroxylase. After activation, dendritic cells transport and present adrenocortical antigens to CD4-positive T-helper-1 (Th1) cells within the local draining lymph node. Activated specific CD4-positive Th1 cells could provide help for the activation and clonal expansion of cytotoxic lymphocytes and autoreactive B cells producing anti-21-hydroxylase and other antibodies. The continuing progressive destruction of adrenal cortex is mediated by several different mechanisms: direct cytotoxicity by apoptosis-inducing cytotoxic lymphocytes via perforin and granzyme B or by the FasL-Fas pathway; direct cytotoxicity by interferon-γ and lymphotoxin-α secreted by CD4-positive Th1 cells; autoantibody-induced activation of the complement system or antibody dependent cellular cytotoxicity; cytotoxic effects of inflammatory cytokines (tumor necrosis factor-α [TNFα], interleukin-1β) and free radicals (nitric oxide, superoxide) released by monocytes and macrophages or by the adrenocortical cells themselves.

1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols: A new class of potent and selective aldosterone synthase inhibitors

Cornelia M. Grombein, Qingzhong Hu, Ralf Heim, Sabrina Rau, Christina Zimmer
European Journal of Medicinal Chemistry 89 (2015) 597e605

1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols and related compounds were synthesized and evaluated for inhibition of aldosterone synthase (CYP11B2), a potential target for cardiovascular diseases associated with elevated plasma aldosterone levels like congestive heart failure and myocardial fibrosis. Introduction of substituents at the phenylsulfinyl moiety and changes of the substitution pattern at the naphthalene core were examined. Potent compounds were further examined for selectivity versus other important steroidogenic CYP enzymes, i.e. the highly homologous 11b-hydroxylase (CYP11B1), CYP17 and CYP19. The most potent compound (IC50 ¼ 14 nM) discovered was the meta-trifluoromethoxy derivative 11, which also exhibited excellent selectivity toward CYP11B1 (SF ¼ 415), and showed no inhibition of CYP17 and CYP19.

Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor

Maarke J.E. Roelofs, M van den Berg, TFH Bovee, AH Piersma, MBM van Duursen
Toxicology 329 (2015) 10–20

Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 mM, 60 mM, and 22 nM for GR, and 39mM, 20 mM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestogens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular D4 steroidogenic pathway. Therefore, adding an in-vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable.
Preclinical Assessment for Selectively Disrupting a Traumatic Memory via Postretrieval Inhibition of Glucocorticoid Receptors

Stephen M. Taubenfeld, Justin S. Riceberg, Antonia S. New, and Cristina M. Alberini
Biol Psychiatry 2009; 65:249–257

Background: Traumatic experiences may lead to debilitating psychiatric disorders including acute stress disorder and posttraumatic stress disorder. Current treatments for these conditions are largely ineffective, and novel therapies are needed. A cardinal symptom of these pathologies is the reexperiencing of the trauma through intrusive memories and nightmares. Studies in animal models indicate that memories can be weakened by interfering with the postretrieval restabilization process known as memory reconsolidation. We previously reported that, in rats, intraamygdala injection of the glucocorticoid receptor antagonist RU38486 disrupts the reconsolidation of a traumatic memory. Here we tested parameters important for designing novel clinical protocols targeting the reconsolidation of a traumatic memory with RU38486.
Methods: Using rat inhibitory avoidance, we tested the efficacy of postretrieval systemic administration of RU38486 on subsequent memory retention and evaluated several key preclinical parameters.
Results: Systemic administration of RU38486 before or after retrieval persistently weakens inhibitory avoidance memory retention in a dose-dependent manner, and memory does not reemerge following a footshock reminder. The efficacy of treatment is a function of the intensity of the initial trauma, and intense traumatic memories can be disrupted by changing the time and number of interventions. Furthermore, one or two treatments are sufficient to disrupt the memory maximally. The treatment selectively targets the reactivated memory without interfering with the retention of another nonreactivated memory.
Conclusions: RU38486 is a potential novel treatment for psychiatric disorders linked to traumatic memories. Our data provide the parameters for designing promising clinical trials for the treatment of flashback-type symptoms of PTSD.

Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors

Amy Lehrner, Linda M. Bierer, Vincent Passarelli, et al.
Psychoneuroendocrinology (2014) 40, 213—220

Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DSTand 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation.

Marked Cortisol Production by Intracrine ACTH in GIP Treated Cultured Adrenal Cells in Which the GIP Receptor Was Exogenously Introduced

Hiroko Fujii, M Tamamori-Adachi, K Uchida, T Susa, T Nakakura, et al.
PLOS ONE Oct 2014;9(10):e110543

The ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in the human adrenal gland causes significant hypercortisolemia after ingestion of each meal and leads to Cushing’s syndrome, implying that human GIPR activation is capable of robustly activating adrenal glucocorticoid secretion. In this study, we transiently transfected the human GIPR expression vector into cultured human adrenocortical carcinoma cells (H295R) and treated them with GIP to examine the direct link between GIPR activation and steroidogenesis. Using quantitative RT-PCR assay, we examined gene expression of steroidogenic related proteins, and carried out immunofluorescence analysis to prove that forced GIPR overexpression directly promotes production of steroidogenic enzymes CYP17A1 and CYP21A2 at the single cell level. Immunofluorescence showed that the transfection efficiency of the GIPR gene in H295R cells was approximately 5%, and GIP stimulation enhanced CYP21A2 and CYP17A1 expression in GIPR-introduced H295R cells (H295R-GIPR). Interestingly, these steroidogenic enzymes were also expressed in the GIPR (–) cells adjacent to the GIPR (+) cells. The mRNA levels of a cholesterol transport protein required for all steroidogenesis, StAR, and steroidogenic enzymes, HSD3b2, CYP11A1, CYP21A2, and CYP17A1 increased 1.2-2.1-fold in GIP-stimulated H295R-GIPR cells. These changes were reflected in the culture medium in which 1.5-fold increase in the cortisol concentration was confirmed. Furthermore, the levels of adenocorticotropic hormone (ACTH) receptor and ACTH precursor proopiomelanocortin (POMC) mRNA were upregulated 2- and 1.5-fold, respectively. Immunofluorescence showed that ACTH expression was detected in GIP-stimulated H295RGIPR cells. An ACTH-receptor antagonist significantly inhibited steroidogenic gene expression and cortisol production. Immunostaining for both CYP17A1 and CYP21A2 was attenuated in cells treated with ACTH receptor antagonists as well as with POMC siRNA. These results demonstrated that GIPR activation promoted production and release of ACTH, and that steroidogenesis is activated by endogenously secreted ACTH following GIP administration, at least in part, in H295R cells.

Improvements in body composition, cardiometabolic risk factors and insulin sensitivity with trenbolone in normogonadic rats

Daniel G. Donner, BR Beck, AC Bulmer, AK Lam, EF Du Toit, et al.
Steroids 94 (2015) 60–69

Trenbolone (TREN) is used for anabolic growth-promotion in over 20 million cattle annually and continues to be misused for aesthetic purposes in humans. The current study investigated TREN’s effects on body composition and cardiometabolic risk factors; and its tissue-selective effects on the cardiovascular system, liver and prostate. Male rats (n = 12) were implanted with osmotic infusion pumps delivering either cyclodextrin vehicle (CTRL) or 2 mg/kg/day TREN for 6 weeks. Dual-energy X-ray Absorptiometry assessment of body composition; organ wet weights and serum lipid profiles; and insulin sensitivity were assessed. Cardiac ultrasound examinations were performed before in vivo studies assessed myocardial susceptibility to ischemia–reperfusion (I/R) injury. Circulating sex hormones and liver enzyme activities; and prostate and liver histology were examined. In 6 weeks, fat mass increased by 34 ± 7% in CTRLs (p < 0.01). Fat mass decreased by 37 ± 6% and lean mass increased by 11 ± 4% with TREN (p < 0.05). Serum triglycerides, HDL and LDL were reduced by 62%, 57% and 78% (p < 0.05) respectively in TREN rats. Histological examination of the prostates from TREN-treated rats indicated benign hyperplasia associated with an increased prostate mass (149% compared to CTRLs, p < 0.01). No evidence of adverse cardiac or hepatic effects was observed. In conclusion, improvements in body composition, lipid profile and insulin sensitivity (key risk factors for cardiometabolic disease) were achieved with six-week TREN treatment without evidence of adverse cardiovascular or hepatic effects that are commonly associated with traditional anabolic steroid misuse. Sex hormone suppression and benign prostate hyperplasia were confirmed as adverse effects of the treatment.
Gender-dependent changes in hematological parameters in patients with Cushing’s disease before and after remission 

Ambrogio, A.G., De Martin, M., Ascoli, P., Cavagnini, F., Giraldi, F.P

European Journal of Endocrinology Mar 2014; 170(3): 393-400

Objective: Glucocorticoids stimulate several steps in red blood cell (RBC) development; however, little is known on changes in erythroid parameters in patients with Cushing’s disease. The aim of this study was to assess both RBC and white blood cell (WBC) parameters in a large cohort of patients with Cushing’s disease and report on alterations in the active phase and after surgical remission. Design and methods: A total of 80 patients with Cushing’s disease (63 women and 17 men) were studied before and for up to 254 months’ follow-up (mean follow-up 65.8±6.71 months) after pituitary/adrenal surgery. Details of blood counts were reviewed and compared with data obtained from a database of healthy subjects. Results: The RBC counts and hemoglobin levels were low in men with active Cushing’s disease (over 80% of values in the lowest quartile) and four patients were overtly anemic, whereas erythrocyte counts and hemoglobin levels were evenly distributed across the normal range in women with active Cushing’s disease. Low erythroid parameters were linked to hypogonadism in men with Cushing’s disease. Recovery in erythroid parameters occurred slowly after remission of hypercortisolism in men, in parallel with improvements in testosterone levels. Over 50% of patients with active disease presented increased WBC counts, irrespective of gender, and prompt normalization within 1 month after surgery. Conclusions: Male patients with Cushing’s disease present reduced RBC counts and hemoglobin levels, associated with low testosterone concentrations, which resolve over time after remission of hypercortisolism. Anemia should therefore be regarded as another unfavorable feature in men with Cushing’s disease.
Myopathies of endocrine disorders: A prospective clinical and biochemical study

Sharma, V., Borah, P., Basumatary, L.J., (…), Goswami, M., Kayal, A.K
Annals of Indian Academy of Neurology 2014; 17 (3), pp. 298-302

Introduction: Major categories of endocrine myopathy include those associated with: Adrenal dysfunction (as in Cushing’s disease or steroid myopathy); thyroid dysfunction (as in myxedema coma or thyrotoxic myopathy); vitamin D deficiency; parathyroid dysfunction; and pituitary dysfunction. Steroid myopathy is the most common endocrine myopathy. Objective: To study the etiology, varied presentations, and outcome after therapy of patients with endocrine myopathies. Materials and Methods: Myopathy was evaluated by the standard clinical procedures: Detailed clinical history, manual muscle strength testing, and creatine phosphokinase (CPK). Endocrine disorders were diagnosed as per clinical features and biochemical parameters. The treatment was given to patients as per underlying endocrine disease. Myopathy was assessed before and after treatment. Results: Out of the 37 patients who were diagnosed with endocrine myopathies, thyroid dysfunction was the most common cause (17 cases), followed by vitamin D deficiency in nine, adrenal dysfunction in six, parathyroid dysfunction in three, and pituitary dysfunction in two. Some patients had atypical presentation (repeated falls in one, tongue fasciculations in one, neck weakness in five, one with ptosis and facial weakness, asymmetrical onset in one, and calf hypertrophy in one. The serum creatine kinase (CK) concentration did not correlate with muscle weakness. Following the treatment regimen which was specific for a given myopathy, 26 patients recovered fully. Conclusion: We found varied clinical presentations of endocrine myopathies. All the patients with neuromuscular complaints should be investigated for endocrine causes because significant number of them recovers fully with specific treatment.
Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

Andreas Bitter, Andreas K. Nüssler, Wolfgang E. Thasler, Kathrin Klein, et al.
Cell Physiol Biochem 2015;35:803-815

Background/Aims: Sterol regulatory element-binding protein (SREBP) 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specific and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specific knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.
Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia

Ruth M. Barrientos, Vanessa M. Thompson, Meagan M. Kitt, Jose Amat, et al.
Neurobiology of Aging xxx (2015) 1e13

Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher corticosterone levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal corticosterone levels were associated with increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 protein expression, the enzyme that catalyzes glucocorticoid formation and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia and prevented Escherichia coli induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia.
Glucocorticoid Receptor-Mediated Cell Cycle Arrest Is Achieved through Distinct Cell-Specific Transcriptional Regulatory Mechanisms

Inez Rogatsky, Janet M. Trowbridge, and Michael J. Garabedian
Molecular and Cellular Biology, Jun 1997; 17(6): 3181–3193

Glucocorticoids inhibit proliferation of many cell types, but the events leading from the activated glucocorticoid receptor (GR) to growth arrest are not understood. Ectopic expression and activation of GR in human osteosarcoma cell lines U2OS and SAOS2, which lack endogenous receptors, result in a G1 cell cycle arrest. GR activation in U2OS cells represses expression of the cyclin-dependent kinases (CDKs) CDK4 and CDK6 as well as their regulatory partner, cyclin D3, leading to hypophosphorylation of the retinoblastoma protein (Rb). We also demonstrate a ligand-dependent reduction in the expression of E2F-1 and c-Myc, transcription factors involved in the G1-to-S-phase transition. Mitogen-activated protein kinase, CDK2, cyclin E, and the CDK inhibitors (CDIs) p27 and p21 are unaffected by receptor activation in U2OS cells. The receptor’s N-terminal transcriptional activation domain is not required for growth arrest in U2OS cells. In Rb-deficient SAOS2 cells, however, the expression of p27 and p21 is induced upon receptor activation. Remarkably, in SAOS2 cells that express a GR deletion derivative lacking the N-terminal transcriptional activation domain, induction of CDI expression is abolished and the cells fail to undergo ligand-dependent cell cycle arrest. Similarly, murine S49 lymphoma cells, which, like SAOS2 cells, lack Rb, require the N-terminal activation domain for growth arrest and induce CDI expression upon GR activation. These cell-type-specific differences in receptor domains and cellular targets linking GR activation to cell cycle machinery suggest two distinct regulatory mechanisms of GR-mediated cell cycle arrest: one involving transcriptional repression of G1 cyclins and CDKs and the other involving enhanced transcription of CDIs by the activated receptor.
Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes

Benjamin J Schiller, R Chodankar, LC Watson, MR Stallcup and KR Yamamoto
Genome Biology 2014; 15:418

Background: Glucocorticoid receptor (GR) is a hormone-activated, DNA-binding transcriptional regulatory factor that controls inflammation, metabolism, stress responses, and other physiological processes. In vitro, GR binds as an inverted dimer to a motif consisting of two imperfectly palindromic 6 bp half sites separated by 3 bp spacers. In vivo, GR employs different patterns of functional surfaces of GR to regulate different target genes. The relationships between GR genomic binding and functional surface utilization have not been defined. Results: We find that A477T, a GR mutant that disrupts the dimerization interface, differs from wild-type GRα in binding and regulation of target genes. Genomic regions strongly occupied by A477T are enriched for a novel half site motif. In vitro, GRα binds half sites as a monomer. Through the overlap between GRα- and A477T-bound regions, we identify GRα-bound regions containing only half sites. We further identify GR target genes linked with half sites and not with the full motif. Conclusions: Genomic regions bound by GR differ in underlying DNA sequence motifs and in the GR functional surfaces employed for regulation. Identification of GR binding regions that selectively utilize particular GR surfaces may discriminate sub-motifs, including the half site motif, that favor those surfaces. This approach may contribute to predictive models for GR activity and therapy.
Cortisol responses to chronic stress in adult macaques: Moderation by a polymorphism in the serotonin transporter gene

Dongdong Qina, Joshua Rizaka, Xiaoli Feng, Shangchuan Yang, Lichuan Yang
Behavioural Brain Research 278 (2015) 280–285

Accumulating evidence has shown that a polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) moderates the association between stress and depressive symptoms. However, the exact etiologies underlying this moderation are not well understood. Here it is reported that among adult female rhesus macaques, an orthologous polymorphism (rh5-HTTLPR) exerted an influence on cortisol responses to chronic stress. It was found that females with two copies of the short allele were associated with increased cortisol responses to chronic stress in comparison to their counterparts who have one or two copies of the long allele. In the absence of stress, no differences related to genotype were observed in these females. This genetic moderation was found without a genetic influence on exposure to stressful situations. Rather it was found to be a genetic modulation of cortisol responses to chronic stress. These findings indicate that the rh5-HTTLPR polymorphism is closely related to hypothalamus–pituitary–adrenal (HPA) axis reactivity, which may increase susceptibility to depression in females with low serotonin transporter efficiency and a history of stress.
Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation

Rebecca T. Hahn, Jessica Hoppstädter, Kerstin Hirschfelder, Nina Hachenthal, et al.
Atherosclerosis 234 (2014) 391e400

Objective: Glucocorticoid-induced leucine zipper (GILZ) represents an anti-inflammatory mediator, whose downregulation has been described in various inflammatory processes. Aim of our study was to decipher the regulation of GILZ in vascular inflammation. Approach and results: Degenerated aortocoronary saphenous vein bypass grafts (n = 15), which exhibited inflammatory cell activation as determined by enhanced monocyte chemoattractrant protein 1 (MCP-1, CCL2) and Toll-like receptor 2 (TLR2) expression, showed significantly diminished GILZ protein and mRNA levels compared to healthy veins (n = 23). GILZ was also downregulated in human umbilical vein endothelial cells (HUVEC) and macrophages upon treatment with the inflammatory cytokine TNF-α in a tristetraprolin (ZFP36, TTP)- and p38 MAPK-dependent manner. To assess the functional implications of decreased GILZ expression, we determined NF-kB activation after GILZ knockdown by siRNA and found that NF-kB activity and inflammatory gene expression were significantly enhanced. Importantly, ZFP36 is induced in TNF-α-activated HUVEC as well as in degenerated vein bypasses. When atheroprotective laminar shear stress was employed, GILZ levels in HUVEC increased on mRNA and protein level. Laminar flow also counteracted TNF-α-induced ZFP36 expression and GILZ downregulation. MAP kinase phosphatase 1 (MKP-1, DUSP1), a negative regulator of ZFP36 expression, was distinctly upregulated under laminar shear stress conditions and downregulated in degenerated vein bypasses. Conclusion: Our data show a diminished expression of the anti-inflammatory mediator GILZ in the inflamed vasculature and indicate that GILZ downregulation requires the mRNA binding protein ZFP36. We suggest that reduced GILZ levels play a role in cardiovascular disease.
Effects of Angiotensin Converting Enzyme Inhibition or Angiotensin Receptor Blockade in Dialysis Patients: A Nationwide Data Survey and Propensity Analysis

Cho-Kai Wu, Yao-Hsu Yang,  Jyh-Ming Jimmy Juang, et al.
Medicine Jan 2015; 94(3): 1-7  Medicine 94(3):e424)

Long-term benefit of using a renin–angiotensin–aldosterone system blocker (an angiotensin-converting enzyme inhibitor (ACEI), or an angiotensin II receptor blocker (ARB)) for patients already receiving dialysis remains undetermined. The aim of this study is to assess the efficacy and safety of ACEI or ARB use in dialysis patients. We performed a population-based cohort study with time-to-event analyses to estimate the relation between the use of ACEI/ARB and their outcomes. We used a nationwide database (Registry for Catastrophic Illnesses) for Taiwan, which has data from 1995 to 2008 nearly of all patients who received dialysis therapy. The records of all dialysis patients aged 18 with no evidence of cardiovascular (CV) events in 1997 and 1998 (133,564 patients) were examined. Users (n=50,961) and nonusers (n=59,913) of an ACEI/ARB were derived. We then used propensity score matching and Cox proportional hazards regression models to estimate adjusted hazard ratios (HRs) for all-cause mortality and CV events in users and nonusers of an ACRI/ARB. The 15,182 patients, who used an ACEI/ARB, and the 15,182 nonusers had comparable baseline characteristics during the 14 years of follow-up. The mortality was significantly greater in patients who did not use an ACEI/ARB (HR=0.90, 95% CI=0.86–0.93). Subgroup analysis of 3 tertiles of patients who used different total amounts of ACEI/ARB during the study period indicated that CV events were more common in patients who used an ACEI/ARB for a short duration (tertile 1: HR=1.63), but less common in those who used an ACEI/ARB for long durations (tertile 2: HR=1.05; tertile 3: HR=0.94; trend for declining HR from tertile 1 to 3: P<0.001). The mortality benefit provided by use of an ACEI/ARB was consistent across most patient subgroups, as was the benefit of ARB monotherapy rather than ACEI monotherapy. Independent of traditional risk factors, overall mortality was significantly lower in dialysis patients who used an ACEI/ARB. In addition, subjects who used an ACEI/ARB for longer durations were significantly less likely to experience CV events.
Adrenal CYP11B1/2 expression in primary aldosteronism: Immunohistochemical analysis using novel monoclonal antibodies

Yasuhiro Nakamura, Takashi Maekawa, Saulo J.A. Felizola, Fumitoshi Satoh, et al.
Biochimica et Biophysica Acta 1842 (2014) 2601–2609

CYP11B1 and CYP11B2 play pivotal roles in adrenocorticosteroids synthesis. We performed semiquantitative immunohistochemical analysis of these proteins in adrenals from patients with primary aldosteronism using novel monoclonal antibodies. Clusters of cortical cells positive for CYP11B2 were detected in the zona glomerulosa (ZG) of normal adrenal gland (NA), idiopathic hyperaldosteronism (IHA) and the adjacent adrenal of aldosterone-producing adenoma (APA). In APA, heterogenous immunolocalization of CYP11B2 and diffuse immunoreactivity of CYP11B1 were detected in tumor cells, respectively. The relative immunoreactivity of CYP11B2 in the ZG of adjacent adrenal of APA was significantly lower than that of NA, IHA and APA tumor cells, suggestive of suppressed aldosterone biosynthesis in these cells. These findings did indicate the regulatory mechanisms of aldosterone biosynthesis were different between normal/hyperplastic and neoplastic aldosterone-producing cells in human adrenals. CYP11B2 immunoreactivity in the ZG could also serve as a potential immunohistochemical marker differentiating morphologically hyperplastic ZG of IHA and APA adjacent adrenal.

Aldosterone signaling and soluble adenylyl cyclase—A nexus for the kidney and vascular endothelium

Boris Schmitz, Stefan-Martin Brand, Eva Brand
Biochimica et Biophysica Acta 1842 (2014) 2601–2609

The steroid hormone aldosterone regulates the reabsorption of water and ions in the kidney and plays a central role in blood pressure regulation and homeostasis. In recent years, the vascular endothelium has been established as an important aldosterone target organ with major implications in renal and cardiovascular health and disease. Different lines of evidence suggest that the calcium- and bicarbonate-activated soluble adenylyl cyclase (sAC) is a novel mediator of aldosterone signaling in both the kidney and vascular endothelium. This review summarizes our current understanding of the molecular mechanisms of sAC gene expression regulation in the kidney and vascular endothelium and outlines the potential clinical implications of sAC in chronic kidney disease and cardiovascular disease. This review is part of a special issue entitled: The role of soluble adenylyl cyclase in health and disease. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.

Trenbolone enhances myogenic differentiation by enhancing β-catenin signaling in muscle-derived stem cells of cattle

J.-X. Zhao, J. Hu, M.-J. Zhu, M. Du

Domestic Animal Endocrinology 40 (2011) 222–229

Testosterone is a key hormone regulating animal growth and development, which promotes skeletal muscle growth and inhibits fat deposition; however, the underlying mechanisms remain poorly defined. Because canonical Wingless and Int/β-catenin signaling promotes myogenesis, we hypothesized that testosterone regulates myogenesis through enhancing the β-catenin signaling pathway and the expression of its targeted genes. Muscle-derived stem cells were prepared from the skeletal muscle of fetal calf at day 180 of gestation and treated with or without trenbolone (10 nM), a synthetic analog of testosterone, in a myogenic medium. Trenbolone treatment increased the protein levels of MyoD and myosin heavy chain, as well as the androgen receptor content. The myogenic effect of trenbolone was blocked by cyproterone acetate, a specific inhibitor of androgen receptor, showing that the myogenic effect of trenbolone was mediated by the androgen receptor. Immunoprecipitation showed that androgen receptor and  -catenin formed a complex, which was increased by trenbolone treatment. Trenbolone activated adenosine monophosphate–activated protein kinase, which might phosphorylate β-catenin at Ser552, stabilizing  -catenin. Indeed, both cytoplasmic and nuclear Testosterone is a key hormone regulating animal growth and development, which promotes skeletal muscle growth and inhibits fat deposition; however, the underlying mechanisms remain poorly defined. Because canonical Wingless and Int/β-catenin signaling promotes myogenesis, we hypothesized that testosterone regulates myogenesis through enhancing the β-catenin signaling pathway and the expression of its targeted genes. Muscle-derived stem cells were prepared from the skeletal muscle of fetal calf at day 180 of gestation and treated with or without trenbolone (10 nM), a synthetic analog of testosterone, in a myogenic medium. Trenbolone treatment increased the protein levels of MyoD and myosin heavy chain, as well as the androgen receptor content. The myogenic effect of trenbolone was blocked by cyproterone acetate, a specific inhibitor of androgen receptor, showing that the myogenic effect of trenbolone was mediated by the androgen receptor. Immunoprecipitation showed that androgen receptor and β-catenin formed a complex, which was increased by trenbolone treatment. Trenbolone activated adenosine monophosphate–activated protein kinase, which might phosphorylate  β-catenin at Ser552, stabilizing β-catenin. Indeed, both cytoplasmic and nuclear β-catenin levels were increased after trenbolone treatment. As a result, β-catenin–mediated transcriptional activity was enhanced by trenbolone treatment. In conclusion, these data provide evidence that testosterone increases cellular β-catenin content which promotes the expression of β-catenin–targeted genes and myogenesis in the muscle-derived stem cells of cattle. β-catenin levels were increased after trenbolone treatment. As a result, β-catenin–mediated transcriptional activity was enhanced by trenbolone treatment. In conclusion, these data provide evidence that testosterone increases cellular β-catenin content which promotes the expression of β-catenin–targeted genes and myogenesis in the muscle-derived stem cells of cattle.
Strategic combination therapy overcomes tyrosine kinase coactivation in adrenocortical carcinoma

Chi-Iou Lin, Edward E. Whang, Jacob Moalem, and Daniel T. Ruan
Surgery 2012; 152:1045-50.

Background. Coactivation of tyrosine kinase limits the efficacy of tyrosine kinase inhibitors. We hypothesized that a strategic combination therapy could overcome tyrosine kinase coactivation and compensatory oncogenic signaling in patients with adrenocortical carcinoma (ACC). Methods. We profiled 88 tyrosine kinases before and after treatment with sunitinib in H295R and SW13 ACC cells. The effects of monotherapy and strategic combination regimens were determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (ie, MTS) assay. Results. The minimum inhibitory concentrations (ICmin) of sunitinib quenched its primary targets: FLT-3, VEGFR-2, and RET. In contrast, ERK, HCK, Chk2, YES, CREB, MEK, MSK, p38, FGR, and AXL were hyperactivated. Monotherapy with sunitinib or PD98059 at their ICmin reduced proliferation by 23%and 19%, respectively, in H295R cells and by 25% and 24%, respectively, in SW13 cells. Sunitinib and PD98059 in combination decreased proliferation by 68% and 64% in H295R and in SW13 cells, respectively (P < .05 versus monotherapy). The effects of combination treatment exceeded the sum of the effects observed with each individual agent alone. Conclusion. We describe the first preclinical model to develop strategic combination therapy to overcome tyrosine kinase coactivation in ACC. Because many tyrosine kinase inhibitors are readily available, this model can be immediately tested in clinical trials for patients with advanced ACC.
Silencing diacylglycerol kinase-theta expression reduces steroid hormone biosynthesis and cholesterol metabolism in human adrenocortical cells

Kai Cai, Natasha C. Lucki, Marion B. Sewer
Biochimica et Biophysica Acta 1841 (2014) 552–562

Diacylglycerol kinase theta (DGKθ) plays a pivotal role in regulating adrenocortical steroidogenesis by synthesizing the ligand for the nuclear receptor steroidogenic factor 1 (SF1). In response to activation of the cAMP signaling cascade nuclear DGK activity is rapidly increased, facilitating PA-mediated, SF1-dependent transcription of genes required for cortisol and dehydroepiandrosterone (DHEA) biosynthesis. Based on our previous work identifying DGKθ as the enzyme that produces the agonist for SF1, we generated a tetracycline-inducible H295R stable cell line to express a short hairpin RNA (shRNA) against DGKθ and characterized the effect of silencing DGKθ on adrenocortical gene expression. Genome-wide DNA microarray analysis revealed that silencing DGKθ expression alters the expression of multiple genes, including steroidogenic genes, nuclear receptors and genes involved in sphingolipid, phospholipid and cholesterol metabolism. Interestingly, the expression of sterol regulatory element binding proteins (SREBPs) was also suppressed. Consistent with the suppression of SREBPs, we observed a down-regulation of multiple SREBP target genes, including 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA red) and CYP51, concomitant with a decrease in cellular cholesterol. DGKθ knockdown cells exhibited a reduced capacity to metabolize PA, with a down-regulation of lipin and phospholipase D (PLD) isoforms. In contrast, suppression of DGKθ increased the expression of several genes in the sphingolipid metabolic pathway, including acid ceramidase (ASAH1) and sphingosine kinases (SPHK). In summary, these data demonstrate that DGKθ plays an important role in steroid hormone production in human adrenocortical cells.
RRM1 modulates mitotane activity in adrenal cancer cells interfering with its metabolization

Antonina Germano, I Rapa, M Volante, S De Francia, C Migliore, et al.
Molecular and Cellular Endocrinology 401 (2015) 105–110

The anti-proliferative activity of mitotane (o,p′DDD) in adrenocortical cancer is mediated by its metabolites o,p′DDE and o,p′DDA. We previously demonstrated a functional link between ribonucleotide reductase M1 (RRM1) expression and o,p′DDD activity, but the mechanism is unknown. In this study we assessed the impact of RRM1 on the bioavailability and cytotoxic activity of o,p′DDD, o,p′DDE and o,p′DDA in SW13 and H295R cells. In H295R cells, mitotane and its metabolites showed a similar cytotoxicity and RRM1 expression was not influenced by any drug. In SW13 cells, o,p′DDA only showed a cytotoxic activity and did not modify RRM1 expression, whereas the lack of sensitivity to o,p′DDE was associated to RRM1 gene up-modulation, as already demonstrated for o,p′DDD. RRM1 silencing in SW13 cells increased the intracellular transformation of mitotane into o,p′DDE and o,p′DDA. These data demonstrate that RRM1 gene interferes with mitotane metabolism in adrenocortical cancer cells, as a possible mechanisms of drug resistance.
New options in the treatment of Cushing’s disease: a focus on pasireotide

Anne-Gaëlle Poullot, Nicolas Chevalier
Research and Reports in Endocrine Disorders 2013:3 31–38

Cushing’s disease is caused by a corticotroph pituitary adenoma secreting adrenocorticotropin and can be fatal in the absence of adequate treatment. Transsphenoidal surgery remains the treatment of choice in almost all cases. However, remission rates are relatively low, and recurrence is usual and can be diagnosed up to decades after the initial diagnosis. Repeat surgery or radiation can be useful in these cases, although both have clear limitations with respect to efficacy and/or side effects. Hence, there is a clear unmet need for an effective medical treatment in patients with recurrent or persistent Cushing’s disease. Pasireotide is a novel multireceptor-targeted somatostatin analog with a high affinity for somatostatin receptor (sstr)-1, sstr-2, sstr-3, and sstr-5. Compared with octreotide, pasireotide has an in vitro binding affinity 40-fold higher for sstr-5, which is the major receptor subtype expressed  by corticotroph pituitary adenoma. Recent studies have suggested a role for this new multireceptor somatostatin analog in Cushing’s disease. We review in this article the current data available regarding pharmacokinetics, clinical efficiency, and tolerance of pasireotide in patients with de novo, persistent, or recurrent Cushing’s disease, with a special focus on the disturbances of glucose metabolism induced by such a treatment.

Optimal management of Cushing syndrome

Edgar G Durán-Pérez, OT Moreno-Loza, G Carrasco-Tobón, A Segovia-Palomo
Research and Reports in Endocrine Disorders 2012:2 19–30

Cushing syndrome (CS) caused by endogenous hypercortisolism is a diagnostic challenge. The most common cause is Cushing disease. Surgical treatment is the first-line therapy for Cushing disease. However, due to the often clinical instability of the patient’s condition, which needs acute treatment of hypercortisolism or inoperable tumors, initial surgery is often not possible. It is therefore important to provide appropriate initial medical treatment. Following surgery, the patient needs to be evaluated and confirmed for disease resolution based on standard criteria, and treated with appropriate supportive measures for the rest of life if necessary. This article reviews the current data and treatment options for Cushing syndrome and proposes a therapeutic algorithm for its optimal management.

Cytotoxic activity of gemcitabine, alone or in combination with mitotane, in adrenocortical carcinoma cell lines

Antonina Germano, Ida Rapa, Marco Volante, Nicola Lo Buono, et al.
Molecular and Cellular Endocrinology 382 (2014) 1–7

We aimed at investigating in vitro the cytotoxic activity (determined using WST-1, apoptosis and cell cycle assays) of gemcitabine, alone or in combination with mitotane, in mitotane-sensitive H295R and mitotane-insensitive SW-13 cells. Results of these experiments were compared with drug-induced modulation of RRM1 gene, the specific target of gemcitabine. In H295R cells, mitotane and gemcitabine combinations showed antagonistic effects and interfered with the gemcitabine-mediated inhibition of the S phase of the cell cycle. By contrast, in SW-13 cells, except  when mitotane was sequentially administered prior to gemcitabine, the combination of the two drugs was synergistic. Such opposite effects were associated with opposite expression profiles of the target gene, with significant up-modulation in H295R but not in SW-13 under gemcitabine and mitotane combination treatment.


Read Full Post »

Pituitary Neuroendocrine Axis

Writer and Curator: Larry H. Bernstein, MD, FCAP 

Hypothalamic-Pituitary-Endocrine Axis

The attachments below are fully illustrated annotated outline of the discussion we are about to be engaged in.

Animation 8.5: The Hypothalamus and Endocrine Function

The hypothalamus is a small, yet vitally important, brain region that integrates the body’s two communication systems: the endocrine and nervous systems. It links the two by sending and receiving signals from other regions of the nervous system while also controlling the body’s “master gland“—the pituitary gland. The pituitary, in turn, controls most other endocrine organs of the body.

The interaction between the hypothalamus, pituitary, and other endocrine glands is known as the hypothalamic–pituitary–endocrine axis. In one animation, we examine the hypothalamic control of the pituitary gland, and we show the endocrine glands that the pituitary controls. In another, we examine a phenomenon called a negative feedback loop, in which hormones from endocrine glands influence the action of the hypothalamus.

Hypothalamus-Pituitary Overview

The hormonal control center of the body can be found at the base of the brain, in a tiny pea-sized structure, called the pituitary gland, and an overlying region, called the hypothalamus. Because the pituitary controls many other endocrine glands, it is known as the “master gland” of the body. However, the hypothalamus wields even greater power, because it controls the pituitary gland.

The pituitary gland consists of two distinct parts. One part, the anterior pituitary, originates from glandular tissue. The other part, the posterior pituitary, consists of neural tissue and is essentially an extension of the brain.

As an extension of the brain, the posterior pituitary contains axons from neurons in the hypothalamus. The cell bodies of these neurons are clustered in groups, called nuclei. A number of nuclei exist in the hypothalamus; the important ones for the posterior pituitary are the paraventricular and supraoptic nuclei.

The neurons that extend into the posterior pituitary produce either the hormone arginine vasopressin (abbreviated AVP) or the hormone oxytocin. These hormones are made in the cell bodies and then transported to the axon terminals.

The axon terminals abut tiny capillaries in the posterior pituitary. If a neuron is stimulated and fires an action potential, the neuron releases its hormones from the axon terminals. The hormones quickly enter the capillaries and flow with the blood into the general circulation of the body.

The AVP-producing (arginine-vasopressin, related to angiotensin and vasopressin peptides) neurons respond to signals relating to thirst and water regulation. If body fluids have a high osmolality, this signal causes the neurons to release AVP into the bloodstream. AVP stimulates the kidneys to conserve water. Although water conservation is its major role, AVP also triggers blood vessels to contract, which increases blood pressure.

The oxytocin-producing neurons respond to stimulation from a suckling baby. When these neurons fire action potentials, they release oxytocin into the general circulation. Oxytocin reaches the mammary glands, triggering them to express milk. These neurons are also activated during childbirth, during which oxytocin triggers uterine contractions. But we have also seen in a previous document that the action of oxytocin is also tied to social behavior, which is expressed as empathy, or anxiety, or anger control in aggressive behavior.  There is another layer in this story that is related to glutaminergic chemistry and GABAergic response.

Unlike the posterior pituitary, the anterior pituitary consists of glandular tissue. The gland consists of numerous cell types, which specialize in making and releasing specific hormones. However, these hormones are only released (or, in some cases, inhibited from being released) in response to hypothalamic hormones.

An elaborate web of capillaries, called the hypothalamic-pituitary portal system, connects the glandular cells with neurons from the hypothalamus. The hypothalamic neurons abut the capillaries, and when stimulated, release hormones into the portal circulation.

The hypothalamic hormones are peptides that travel directly to the cells of the anterior pituitary. Here, a specific hormone affects a specific type of anterior pituitary cell. Each cell type, in turn, produces and releases its own hormones into the general circulation. Once released, the anterior pituitary hormones travel throughout the body to their various targets.

The hypothalamic hormones are generally called releasing hormones, because most of them trigger the anterior pituitary to release hormones. Some, however, inhibit hormone release, as indicated by their specific names. The anterior pituitary hormones are called tropic hormones. Click on these hormone pairs to learn the function of the tropic hormones in the body.

Negative Feedback Loops

The hypothalamus initiates a chain of events that control the endocrine system. It releases hormones that trigger the anterior pituitary to release more hormones. These hormones – control vital endocrine organs: the adrenal glands, thyroid, ovaries, testes, which in turn influence the pituitary gland by a feedback loop.. Although the hypothalamus drives the system, the hypothalamus is kept in check by this negative feedback loop.

Let’s look at a negative feedback loop using the hormones of the adrenal cortex as an example. In response to stress signals, the hypothalamus releases corticotropin-releasing hormone, or CRH. CRH triggers the anterior pituitary to release adrenocorticotropic hormone, or ACTH, which triggers the adrenal cortex to release a steroid hormone called cortisol. The same mechanism pertains to the thyroid and the relationship between thyroid stimulating hormone (TSH) and thyroid hormone.

Cortisol has many effects on different target organs in the body, but the primary one is to increase glucose in the blood. This sugar is an energy resource that allows the body to respond to physiological or psychological stress. Cortisol, estrogen and androgen are not peptide hormones.  They are steroid hormones, synthesized with a cholesterol backbone, and are also related to the bile secreted by the liver.  While peptide hormones have an amino acid sequence and are highly polar, this is not the case for the steroids.

In addition to acting on organs and tissues throughout the body, the hormones travel through the bloodstream back to the brain, where they inhibit the release of CRH.

Without CRH, the anterior pituitary does not release ACTH. In addition to this effect, the cortisol also acts directly on the anterior pituitary to inhibit ACTH release. Without ACTH, the adrenal cortex stops releasing cortisol.

This interaction is an example of a negative feedback loop. In this loop, the output of the system—the hormones from the adrenal cortex—ultimately diminish the input from the system—the hormones from the hypothalamus and anterior pituitary. This system turns on cortisol release, but then turns it off before cortisol levels get too high, keeping them at a fairly steady level.

This description is not complete without mention of the relationship between growth hormone (GSH) and the liver.  Growth hormone stimulates the liver to produce insulin-like peptide 1 (IL-1), which acts on the pancreatic islet cells to produce insulin.  There is also a competing relationship between glucagon, synthesized by the liver, which acts on glycogenolysis, and insulin, which facilitates glucose entry into peripheral tissues, and is therefore, anabolic.   Insofar as GSH is concerned, it is pleiotrophic because it promotes insulin secretion by the pancreas, but it also raises blood glucose levels.


Through its release of hormones, the hypothalamus controls reproduction, growth, metabolism, water conservation, blood pressure, lactation, childbirth, and responses to stress. Through its connections with other regions of the nervous system, the hypothalamus controls many other bodily functions.



Hypothalamic-Pituitary-Adrenal Axis

The interactions among the organs that constitute the HPA axis, a major part of the neuroendocrine system that controls reactions to stress and regulates many body processes, including digestion, the immune system, mood and emotions, sexuality and energy storage and expenditure is illustrated in the picture above. It is the common mechanism for interactions among glands, hormones, and parts of the midbrain that mediate the general adaptation syndrome (GAS).[1] While steroids are produced only by vertebrates, the physiological role of the HPA axis and corticosteroids in stress response is so fundamental that analogous systems can be found in invertebrates and monocellular organisms as well.

Anatomical connections between brain areas such as the amygdala, hippocampus, prefrontal cortex and hypothalamus facilitate activation of the HPA axis. Sensory information arriving at the lateral aspect of the amygdala is processed and conveyed to the central nucleus, which projects to several parts of the brain involved in responses to fear. At the hypothalamus, fear-signaling impulses activate both the sympathetic nervous system and the modulating systems of the HPA axis.

The key elements of the HPA axis are:

The paraventricular nucleus of the hypothalamus, which contains neuroendocrine neurons that synthesize and secrete vasopressin and corticotropin-releasing hormone (CRH). These two peptides regulate:

The anterior lobe of the pituitary gland. In particular, CRH and vasopressin stimulate the secretion of adrenocorticotropic hormone (ACTH), once known as corticotropin. ACTH in turn acts on:

the adrenal cortex, which produces glucocorticoid hormones (mainly cortisol in humans) in response to stimulation by ACTH. Glucocorticoids in turn act back on the hypothalamus and pituitary (to suppress CRH and ACTH production) in a negative feedback cycle.

CRH and vasopressin are released from neurosecretory nerve terminals at the median eminence. CRH is transported to the anterior pituitary through the portal blood vessel system of the hypophyseal stalk and vasopressin is transported by axonal transport to the posterior pituitary. There, CRH and vasopressin act synergistically to stimulate the secretion of stored ACTH from corticotrope cells. ACTH is transported by the blood to the adrenal cortex of the adrenal gland, where it rapidly stimulates biosynthesis of corticosteroids such as cortisol from cholesterol. Cortisol is a major stress hormone and has effects on many tissues in the body, including the brain. In the brain, cortisol acts on two types of receptor – mineralocorticoid receptors and glucocorticoid receptors, and these are expressed by many different types of neurons. One important target of glucocorticoids is the hypothalamus, which is a major controlling centre of the HPA axis.

Hypothalamic–pituitary–gonadal axis

This axis controls development, reproduction, and aging in animals. Gonadotropin-releasing hormone (GnRH) is secreted from the hypothalamus by GnRH-expressing neurons. The anterior portion of the pituitary gland produces luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the gonads produce estrogen and testosterone.

In oviparous organisms (e.g. fish, reptiles, amphibians, birds), the HPG axis is commonly referred to as the hypothalamus-pituitary-gonadal-liver axis (HPGL-axis) in females. Many egg-yolk and chorionic proteins are synthesized heterologously in the liver, which are necessary for oocyte growth and development. Examples of such necessary liver proteins are vitellogenin and choriogenin.

The hypothalamus is located in the brain and secretes GnRH. GnRH travels down the anterior portion of the pituitary via the hypophyseal portal system and binds to receptors on the secretory cells of the adenohypophysis. In response to GnRH stimulation these cells produce LH and FSH, which travel into the blood stream.

These two hormones play an important role in communicating to the gonads. In females FSH and LH act primarily to activate the ovaries to produce estrogen and inhibin and to regulate the menstrual cycle and ovarian cycle. Estrogen forms a negative feedback loop by inhibiting the production of GnRH in the hypothalamus. Inhibin acts to inhibit activin, which is a peripherally produced hormone that positively stimulates GnRH-producing cells. Follistatin, which is also produced in all body tissue, inhibits activin and gives the rest of the body more control over the axis. In males LH stimulates the interstitial cells located in the testes to produce testosterone, and FSH plays a role in spermatogenesis. Only small amounts of estrogen are secreted in males. Recent research has shown that a neurosteroid axis exists, which helps the cortex to regulate the hypothalamus’s production of GnRH.

Hypothalamic–pituitary–thyroid axis

thyroid function axis

thyroid function axis

Short overview of thyroid homeostasis

Short overview of thyroid homeostasis

Thyroid homeostasis results from a multi-loop feedback system that is found in virtually all higher vertebrates. Proper function of thyrotropic feedback control is indispensable for growth, differentiation, reproduction and intelligence. Very few animals (e.g. axolotls and sloths) have impaired thyroid homeostasis that exhibits a very low set-point that is assumed to underlie the metabolic and ontogenetic anomalies of these animals.

The pituitary gland secretes thyrotropin (TSH; Thyroid Stimulating Hormone) that stimulates the thyroid to secrete thyroxine (T4) and, to a lesser degree, triiodothyronine (T3). The major portion of T3, however, is produced in peripheral organs, e.g. liver, adipose tissue, glia and skeletal muscle by deiodination from circulating T4. Deiodination is controlled by numerous hormones and nerval signals including TSH, vasopressin and catecholamines.

Both peripheral thyroid hormones (iodothyronines) inhibit thyrotropin secretion from the pituitary (negative feedback). Consequently, equilibrium concentrations for all hormones are attained.

TSH secretion is also controlled by thyrotropin releasing hormone (thyroliberin, TRH), whose secretion itself is again suppressed by plasma T4 and T3 in CSF (long feedback, Fekete–Lechan loop). Additional feedback loops are ultrashort feedback control of TSH secretion (Brokken-Wiersinga-Prummel loop) and linear feedback loops controlling plasma protein binding. Convergence of multiple afferent signals in the control of TSH release may be the reason for the observation that the relation between free T4 concentration and TSH levels deviates from a pure loglinear relation that has previously been proposed.

Thyrotropic feedback control - Jwdietrich

Thyrotropic feedback control – Jwdietrich

“Thyrotropic feedback control” by Jwdietrich2 – Own work. Licensed under CC BY 3.0 via Wikimedia Commons –

The above has been a broad stroke of the Pituitary-Hypophysial-Endocrine Axis. It does not take into account another level of complexity in the receptor mediated reactions.

Anatomy of the pituitary, thyroid, parathyroid and adrenal glands

Ritchie, J.E., Balasubramanian, S.P
Surgery (United Kingdom) 2014; 32 (10), pp. 499-503

A detailed understanding of anatomy is essential for several reasons: to enable
accurate diagnosis and plan appropriate management; to perform surgery in a safe
and effective manner avoiding damage to adjacent structures and; to anticipate and
recognize variations in normal anatomy. This chapter will cover the anatomy of four
major endocrine glands (thyroid, parathyroid, pituitary and adrenal). Other
endocrine glands (such as the hypothalamus, pineal gland, thymus, endocrine
pancreas and the gonads) are beyond the scope of this chapter. In addition to gross
anatomy, clinically relevant embryological and histological details of these four
glands are also discussed.

Physiology of the pituitary, thyroid, parathyroid and adrenal glands

Mihai, R.
Surgery (United Kingdom) 2014; 32 (10), pp. 504-512

The pituitary gland is made of clusters of cells producing specific hormones that
control growth (growth hormone), thyroid function (triiodothyronine (T3) and
thyroxine (T4)), adrenal function (adrenocorticotrophic hormone (ACTH)) and gonadal
function (follicle-timulating hormone and luteinizing hormone). In addition, the neurons
that join the posterior pituitary (neurohypophysis) secrete vasopressin – the
antidiuretic hormone involved in maintaining water balance. The negative feedback
loop is the basic mechanism to control the regulation of all endocrine glands.
Hypothalamic peptides – releasing hormones (e.g. TRH, corticotrophin-releasing
hormone) reach the hypophysis via the portal venous system and induce the
secretion of specific stimulating hormones (e.g. thyroid-stimulating hormone,
ACTH) that drive the end-target endocrine cells to secrete hormones (e.g.
thyroid hormones – T3 and T4 or adrenal hormones – cortisol, dehydro-epiandrosterone sulphate). The plasma levels of these circulating hormones inhibit
the pituitary (short feedback) or the hypothalamus (long feedback) and limit the further
release of releasing and stimulating hormones. The effects of circulating hormones
on different tissues are mediated via specific receptors on the cell membrane (e.g.
vasopressin receptors), in the cytoplasm (steroid receptor for cortisol) or in the
nucleus (e.g. thyroid hormone receptors). Understanding the physiological effects of
peripheral hormones helps understanding the mechanisms by which clinical signs
and symptoms develop in diseases characterized by excessive hormone secretion
(e.g. thyrotoxicosis, Cushing syndrome, phaeochromocytomas) or lack of hormone
secretion (e.g. diabetes insipidus). The parathyroid gland and adrenal medulla are
not controlled by the pituitary but play important roles in calcium metabolism
and the adrenergic (sympathetic nervous system) function respectively.

Pathology of the pituitary, parathyroid, thyroid and adrenal glands

Okpokam, A., Johnson, S.J.
Surgery (United Kingdom) 2014; 32 (10), pp. 513-524

The clinical presentation of pathology of these endocrine organs is usually of hyper-
or hypo-secretion of hormones, enlargement and/or nodules found either clinically
or radiologically. Hyperfunction usually results from hyperplasia or functioning
neoplasms. Hypofunction usually represents destruction of the gland. Neoplasms
may be functional or non-functional, and benign or malignant, the latter may also
present as distant metastases. Many cases benefit from multidisciplinary team
discussion, pre- and/or post-operatively. Most hyperplasia/neoplasia is sporadic,
but a significant minority occurs in familial settings, for example multiple endocrine
neoplasia (MEN) syndromes type 1 and type 2. Any of these endocrine organs
can also be involved by non-endocrine primary malignancy, either by direct
infiltration or blood-borne metastasis.

Neuroanatomy and Physiology of the Avian Hypothalamic/Pituitary Axis: Clinical Aspects

Midge Ritchie
Vet Clin Exot Anim 17 (2014) 13–22

The pituitary gland (hypophysis) is a small gland that is intimately connected
to the hypothalamus at the base of the brain and is classified as either
adenohypophysis or neurohypophysis.

The avian thyroid glands are paired glands located ventrolaterally to the
trachea. The histology of the avian thyroids is the same as in mammals:
organized into follicles filled with colloid and lined with cuboidal epithelial cells
that secrete into the interior of the follicles.

Adrenal lesions in birds have been described postmortem only. Antemortem
diagnosis of adrenal disease has not been reported in birds. It is believed,
however, that the ACTH stimulation and low dose dexamethasone suppression
test can potentially be used in birds for the diagnosis of hypoadrenocorticism
and hyperadrenocorticism.

In birds, as in other verterbrates, gonadotropin-releasing hormone (GnRH), also
known as luteinizing hormone releasing hormone (LHRH), released from the
hypothalamus, is the primary factor responsible for the release of gonadotropins
(luteinizing hormone [LH], follicle-stimulating hormone [FSH], and prolactin) by the
anterior pituitary gland. Gonadotropins bind to their gonadal receptors and affect
the function of the ovaries and testes.

The 2 hormones of the neurohypophysis, arginine vasotocin (AVT) and mesotocin
(MT), are produced by and secreted from separate neurosecretory neurons. AVT
and MT are transported bound to carrier proteins by axoplasmic transport. The
hormones are then stored in pars nervosa before release.

Endocrine responses to critical illness: Novel insights and therapeutic implications

Boonen, E., Van Den Berghe, G.
Journal of Clinical Endocrinology and Metabolism 2014; 99 (5), pp. 1569-1582

Context: Critical illness, an extreme form of severe physical stress, is characterized
by important endocrine and metabolic changes. Due to critical care medicine,
survival from previously lethal conditions has become possible, but many
patients now enter a chronic phase of critical illness. The role of the endocrine
and metabolic responses to acute and prolonged critical illness in mediating or
hampering recovery remains highly debated. Evidence Acquisition: The recent
literature on changes within the hypothalamic-pituitary-thyroid axis and the
hypothalamic-pituitary-adrenal axis and on hyperglycemia in relation to recovery
from critical illness was critically appraised and interpreted against previous
insights. Possible therapeutic implications of the novel insights were analyzed.
Specific remaining questions were formulated. Evidence Synthesis: In recent years,
important novel insights in the pathophysiology and the consequences of some
of these endocrine responses to acute and chronic critical illness were generated.
Acute endocrine adaptations are directed toward providing energy and substrates
for the vital fight-or-flight response in a context of exogenous substrate deprivation.
Distinct endocrine and metabolic alterations characterize the chronic phase of critical
illness, which seems to be no longer solely beneficial and could hamper recovery and
rehabilitation.Conclusions: Important novel insights reshape the current view on
endocrine and metabolic responses to critical illness and further clarify underlying
pathways. Although many issues remain unresolved, some therapeutic implications
were already identified. More work is required to find better treatments, and the
optimal timing for such treatments, to further prevent protracted critical illness, to
enhance recovery thereof, and to optimize rehabilitation.

Endocrinopathies after allogeneic and autologous transplantation of hematopoietic
stem cells

Orio, F., Muscogiuri, G., Palomba, S., (…), Colao, A., Selleri, C.
Scientific World Journal 2014; 2014, 282147

Early and late endocrine disorders are among the most common complications in
survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-stem cell
transplant (HSCT). This review summarizes main endocrine disorders reported in
literature and observed in our center as consequence of auto- and allo-HSCT and
outlines current options for their management. Gonadal impairment has been found
early in approximately two-thirds of auto- and allo-HSCT patients: 90-99% of
women and 60-90% of men. Dysfunctions of the hypothalamus-pituitary-growth
hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and
hypothalamus-pituitary-adrenal axis were documented as later complications,
occurring in about 10, 30, and 40% of transplanted patients, respectively. Moreover,
overt or subclinical thyroid complications (including persistent low-T3 syndrome,
chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma),
gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our
analysis further provides evidence that main recognized risk factors for endocrine
complications after HSCT are the underlying disease, previous pretransplant
therapies, the age at HSCT, gender, total body irradiation, posttransplant
derangement of immune system, and in the allogeneic setting, the presence of
graft-versus-host disease requiring prolonged steroid treatment. Early identification of
endocrine complications can greatly improve the quality of life of long-term survivors
after HSCT.

Purinergic signalling in endocrine organs

Burnstock, G.
Purinergic Signalling 2014; 10 (1), pp. 189-231

There is widespread involvement of purinergic signalling in endocrine biology.
Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone
release. Adenosine 5′-triphosphate (ATP) regulates insulin release in the
pancreas and is involved in the secretion of thyroid hormones. ATP plays a major
role in the synthesis, storage and release of catecholamines from the adrenal gland.
In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion,
while in the testes, both Sertoli and Leydig cells express purinoceptors that
mediate secretion of oestradiol and testosterone, respectively. ATP released as
a cotransmitter with noradrenaline is involved in activities of the pineal gland
and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and
adenosine stimulate or modulate the release of luteinising hormone-releasing
hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X
and P2Y receptors have been identified on human placental syncytiotrophoblast
cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes
have been recognised recently to have endocrine function involving purinoceptors.

Heroes in endocrinology: Nobel prizes

de Herder, W.W.
Endocrine Connections 2014; 3 (3), pp. R94-R104

The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then,
the Nobel Prizes in Physiology or Medicine, Chemistry and Physics have been awarded
to at least 33 distinguished researchers who were directly or indirectly involved
in research into the field of endocrinology. This paper reflects on the life histories,
careers and achievements of 11 of them: Frederick G Banting, Roger Guillemin,
Philip S Hench, Bernardo A Houssay, Edward C Kendall, E Theodor Kocher,
John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl W Sutherland, Jr
and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and
winners of many prizes and awards.

A brief history of great discoveries in pharmacology: In celebration of the centennial
anniversary of the founding of the American Society of Pharmacology and
Experimental Therapeutics
Rubin, R.P.
Pharmacological Reviews 2007; 59 (4), pp. 289-359

Chapter 49 – Primary Hyperparathyroidism and Hyperparathyroid Bone Disease
Lorraine A. Fitzpatrick
Osteoporosis (Second Edition), Volume 2, 2001, Pages 259–269

This chapter reviews the current state of knowledge about primary hyperparathyroidism
(1°HPT) and bone and highlights recent long-term data. Variable degrees of osteopenia
are common in patients having 1°HPT and osteoporosis may be evident at the
diagnosis of 1°HPT. The skeletal deficits are occasionally severe, but usually of
undetermined relationship to the hyperparathyroidism. On average, the decrements
of bone mass suggest only about a doubling of fracture risk, an increment
not discernible in the small studies done to date. The few prospective studies
of fracture risk in 1°HPT were not sufficiently powered to adequately address the
issue. Osteopenia may be worst at primarily cortical sites, which would suggest
a greater risk of appendicular than of spinal crush fractures. Regardless of site or
severity of osteopenia, surgical therapy of 1°HPT causes substantially increased
bone mineral density (BMD) at most sites, on the order of 10 to 12%.
Increases of such magnitude are rarely seen in therapy of osteoporosis by any
other means. Moreover, the increases are larger and may go on for longer periods
than could be accounted for by simple filling in of remodeling space. One
must reason that decrements of bone mass similar to those seen in 1°HPT
increase fracture risk under other circumstances, and assure that restoration of
BMD after parathyroid adenomectomy in hyperparathyroid patients
should substantially reduce fracture risk. Severe bone disease caused by
1°HPT is rare. As a group, hyperparathyroid patients have mildly to moderately
reduced bone mineral density that may be worst for cortical bone, but which
has been observed at all sites. Removal of parathyroid adenomas and restoration
of normal parathyroid function causes substantial, lasting increases of BMD
(averaging 10 to 12%). Gain of bone occurs at all sites, may go on for up to
10 years, and is greatest in patients having the greatest baseline decrements
of BMD.

New aspects of immunoregulation by growth and lactogenic hormones
Berczi, I., Quintanar Stephano, A., Campos, R., Kovacs, K.
Advances in Neuroimmune Biology 2014; 5 (1), pp. 43-60

Growth hormone and prolactin maintain adaptive immunity, which incudes cell
mediated immunity, antibody- and autoimmune reactions, maintain thymus
and bone marrow function. Insulin like growth factor-1 participate in the
regulatory action of growth hormone and prolactin. The hypothalamus-pituitary-
adrenal axis stimulates innate immunity and suppresses adaptive immunity.
Dopamine also inhibits adaptive immunity and regulates innate immunity.
Catecholamine’s and corticosteroids support innate immunity and stimulate
suppressor-regulatory T cells, which inhibit adaptive immunity. Adrenalectomy
sensitized mice to Lipid A, which was mediated by exaggerated production
of tumor necrosis factor-alpha, due to the lack of functional hypothalamic
pituitary adrenal axis. Growth and lactogenic hormones share signal
transduction pathways with type I (gamma-c) cytokines. This indicates
functional overlap. The hypothalamic pituitary adrenal axis produces
glucocorticoids, which stimulate innate immunity, and play a primary
role during the acute phase response. Vasopressin supports the acute
phase response, maintains chronic inflammatory reactions and coordinates
healing. Vasopressin maintains immunocompetence during homeostasis
as it stimulates the hypothalamus-pituitary-adrenal axis and also prolactin.
Vasopressin stimulates innate immune cytokine production. Oxytocin is
immunoregulatory. Thyroidectomy in rats suppresses immune function and
thyroxin releases growth hormone and prolactin from transplanted pituitary
grafts in rats and also restores immunocompetence. This indicates that
thyroxin is an indirect immunoregulator. The growth hormone secretagouge,
ghrelin, is immunoregulatory. Dopamine is a neurotransmitter and immuno-regulator. Dopamine has a role in normal immune function and in stress,
inflammatory diseases, schizophrenia, Parkinson disease, Tourette syndrome,
Lupus, Multiple Sclerosis, AIDS, and generalized anxiety syndrome.

Increased frequency of the rs2066853 variant of aryl hydrocarbon receptor gene
in patients with acromegaly
Cannavo, S., Ferrau, F., Ragonese, M., (…), Ruggeri, R.M., Trimarchi, F.
Clinical Endocrinology 2014; 81 (2), pp. 249-253

Aryl hydrocarbon receptor (AHR) pathway has a key role in cellular detoxification
mechanisms and seems implicated in tumorigenesis. Moreover, polymorphisms
and mutations of AHR gene have been associated with several human and
animal tumours. Although AHR has been found differently expressed in pituitary
adenomas, AHR gene mutation status has never been investigated in acromegalic
patients. Design In this study, we evaluated patients with apparently sporadic GH-secreting pituitary adenoma for AHR gene variants.
Patients and Methods
Seventy patients with sporadic GH-secreting pituitary adenoma (M = 27, age
59·1 ± 1·6 years) and 157 sex- and age-atched controls were enrolled in the
study. In all patients and controls, the exons 1, 2, 3, 5 and 10 of AHR gene were
evaluated for nucleotide variants by sequencing analysis.
The rs2066853 polymorphism was identified in the exon 10 of 18/70 acromegalic
patients and 9/157 healthy subjects (25·7 vs. 5·7%, χ2 = 18·98 P < 0·0001), in
homozygosis in one patient and in heterozygosis in the other 17 and in the
9 healthy subjects. Moreover, a heterozygous rs4986826 variant in exon 10
was identified in a patient with heterozygous rs2066853 polymorphism, and
in the patient with homozygous rs2066853 variant. This second polymorphism
was not detected in the control group. Patients with rs2066853 polymorphism
showed increased IGF-1 ULN (P < 0·05) and prevalence of cavernous
sinus invasion (P = 0·05), thyroid (P = 0·02), bladder (P = 0·0001) or
lymphohematopoietic (P < 0·05) tumours.
AHR gene rs2066853 polymorphism is significantly more frequent in
acromegalic patients than in healthy subjects and is associated with
increased disease aggressivity. Moreover, the rs4986826 variant was
detected in few patients with rs2066853 polymorphism, but its role is
to be cleared.

Current knowledge of D-aspartate in glandular tissues
Hunn, B.H.M., Martin, W.G., Simpson Jr., S., Mclean, C.A.
Clinical Endocrinology 2014; 81 (2), pp. 249-253

Aryl hydrocarbon receptor (AHR) pathway has a key role in cellular
detoxification mechanisms and seems implicated in tumorigenesis.
Moreover, polymorphisms and mutations of AHR gene have been
associated with several human and animal tumours. Although AHR has
been found differently expressed in pituitary adenomas, AHR gene mutation
status has never been investigated in acromegalic patients.
In this study, we evaluated patients with apparently sporadic GH-secreting
pituitary adenoma for AHR gene variants.
Patients and Methods
Seventy patients with sporadic GH-secreting pituitary adenoma (M = 27,
age 59·1 ± 1·6 years) and 157 sex- and age-atched controls were enrolled
in the study. In all patients and controls, the exons 1, 2, 3, 5 and 10 of
AHR gene were evaluated for nucleotide variants by sequencing analysis.
The rs2066853 polymorphism was identified in the exon 10 of 18/70
acromegalic patients and 9/157 healthy subjects (25·7 vs. 5·7%, χ2 = 18·98
P < 0·0001), in homozygosis in one patient and in heterozygosis in the other
17 and in the 9 healthy subjects. Moreover, a heterozygous rs4986826 variant
in exon 10 was identified in a patient with heterozygous rs2066853
polymorphism, and in the patient with homozygous rs2066853 variant.
This second polymorphism was not detected in the control group. Patients
with rs2066853 polymorphism  showed increased IGF-1 ULN (P < 0·05)
and prevalence of cavernous sinus invasion (P = 0·05), thyroid (P = 0·02),
bladder (P = 0·0001) or lymphohematopoietic (P < 0·05) tumours.
AHR gene rs2066853 polymorphism is significantly more frequent in
acromegalic patients than in healthy subjects and is associated with
increased disease aggressivity. Moreover, the rs4986826 variant was
detected in few patients with rs2066853 polymorphism, but its role is
to be cleared.

Autophagy in the endocrine glands
Weckman, A., Di Ieva, A., Rotondo, F., (…), Kovacs, K., Cusimano
Journal of Molecular Endocrinology 2013; 52 (2), pp. R151-R163

Autophagy is an important cellular process involving the degradation of
intracellular components. Its regulation is complex and while there are
many methods available, there is currently no single effective way of
detecting and monitoring autophagy. It has several cellular functions
that are conserved throughout the body, as well as a variety of different
physiological roles depending on the context of its occurrence in the
body. Autophagy is also involved in the pathology of a wide range of
diseases. Within the endocrine system, autophagy has both its traditional
conserved functions and specific functions. In the endocrine glands,
autophagy plays a critical role in controlling intracellular hormone levels.
In peptide-secreting cells of glands such as the pituitary gland, crinophagy,
a specific form of autophagy, targets the secretory granules to control the
levels of stored hormone. In steroid-secreting cells of glands such as the
testes and adrenal gland, autophagy targets the steroid-producing organelles.
The dysregulation of autophagy in the endocrine glands leads to several
different endocrine diseases such as diabetes and infertility. This review
aims to clarify the known roles of autophagy in the physiology of the
endocrine system, as well as in various endocrine diseases.

Insm1 controls development of pituitary endocrine cells and requires a SNAG
domain for function and for recruitment of histone-modifying factors
Welcker, J.E., Hernandez-Miranda, L.R., Paul, F.E., (…), Selbach, M., Birchmeier, C.
Development (Cambridge) 2013; 140 (24), pp. 4947-4958

The Insm1 gene encodes a zinc finger factor expressed in many endocrine organs.
We show here that Insm1 is required for differentiation of all endocrine cells in the
pituitary. Thus, in Insm1 mutant mice, hormones characteristic of the different
pituitary cell types (thyroid-stimulating hormone, follicle-stimulating hormone,
melanocyte-stimulating hormone, adrenocorticotrope hormone, growth hormone
and prolactin) are absent or produced at markedly reduced levels. This differentiation
deficit is accompanied by upregulated expression of components of the Notch
signaling pathway, and by prolonged expression of progenitor markers, such
as Sox2. Furthermore, skeletal muscle-specific genes are ectopically expressed
in endocrine cells, indicating that Insm1 participates in the repression of an
inappropriate gene expression program. Because Insm1 is also essential for
differentiation of endocrine cells in the pancreas, intestine and adrenal gland,
it is emerging as a transcription factor that acts in a pan-endocrine manner.
The Insm1 factor contains a SNAG domain at its N-terminus, and we show
here that the SNAG domain recruits histone-modifying factors (Kdm1a, Hdac1/2
and Rcor1-3) and other proteins implicated in transcriptional regulation (Hmg20a/b
and Gse1). Deletion of sequences encoding the SNAG domain in mice disrupted
differentiation of pituitary endocrine cells, and resulted in an upregulated expression
of components of the Notch signaling pathway and ectopic expression of skeletal
muscle-specific genes. Our work demonstrates that Insm1 acts in the epigenetic
and transcriptional network that controls differentiation of endocrine cells in the
anterior pituitary gland, and that it requires the SNAG domain to exert
this function in vivo.
Neuromedin B stimulates the hypothalamic–pituitary–gonadal axis in male rats

C.K. Boughton, S.A. Patel, E.L. Thompson, M. Patterson, A.E. Curtis, A. Amina, et al.
Regulatory Peptides 187 (2013) 6–11

Neuromedin B (NMB) is a highly conserved bombesin-related peptide found in mammals. NMB mRNA is detected in the central nervous system(CNS) and is highly expressed in the rat hypothalamus, in particular the medial preoptic area and the arcuate nucleus. The mammalian bombesin family of receptors consists of three closely related G protein coupled receptors, BB1, BB2 and BB3. The BB1 receptor subtype has the highest affinity for NMB. NMB has well documented roles in the regulation of the thyroid axis and the stress axis in rats. However, there is little available data regarding the role of NMB in the regulation of the hypothalamic–pituitary–gonadal (HPG) axis. It is known that the NMB receptor is expressed in immortalized gonadotrophin releasing hormone (GnRH) releasing GT1-7 cells and murine forebrain GnRH neurons, and that anterior pituitary NMB immunoreactivity is altered by changes in the sex steroid environment.
The objective of these studies was thus to further investigate the effects of NMB on the HPG axis. Intracerebroventricular (ICV) administration of NMB (10nmol) to adult male rats significantly increased plasma luteinizing hormone (LH) levels 30min after injection (plasma LH ng/ml; saline 0.69±0.07, 10nmol NMB1.33± 0.17, P b 0.01). In vitro, NMB stimulated GnRH release from hypothalamic explants from male rats and from hypothalamic GT1-7 cells.
NMB had no significant effect on LH release from anterior pituitary explants from male rats, or from pituitary LβT2 cells in vitro. These results suggest a previously unreported role for NMB in the stimulation of the HPG axis via hypothalamic GnRH. Further work is now required to determine the receptor mediating the effects of NMB on the reproductive axis and the physiological role of NMB in reproduction.

Thyroid and Pituitary

TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development

M Molecular and Cellular Endocrinology 400 (2015) 129–139 Martínez-Armenta, SD de León-Guerrero, A Catalán, L Alvarez-Arellano, et al.

The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFβ inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFβ isoforms (1-3) and both TGFβ receptors (TβRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFβ2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFβ signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus.

Gonadotropic Hormone

The essence of female–male physiological dimorphism: Differential Ca2+-homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroids? The Calcigender paradigm

Arnold De Loof
General and Comparative Endocrinology 211 (2015) 131–146

Ca2+ is the most omnipresent pollutant on earth, in higher concentrations a real threat to all living cells. When [Ca2+]i rises above 100 nM (=resting level), excess Ca2+ needs to be confined in the SER and mitochondria, or extruded by the different Ca2+-ATPases. The evolutionary origin of eggs and sperm cells has a crucial, yet often overlooked link with Ca2+-homeostasis. Because there is no goal whatsoever in evolution, gametes did neither originate ‘‘with the purpose’’ of generating a progeny nor of increasing fitness by introducing meiosis. The explanation may simply be that females ‘‘invented the trick’’ to extrude eggs from their body as an escape strategy for getting rid of toxic excess Ca2+ resulting from a sex-hormone driven increased influx into particular cells and tissues. The production of Ca2+-rich milk, seminal fluid in males and all secreted proteins by eukaryotic cells may be similarly explained. This view necessitates an upgrade of the role of the RER-Golgi system in extruding Ca2+. In the context of insect metamorphosis, it has recently been (re)discovered that (some isoforms of) Ca2+-ATPases act as membrane receptors for some types of lipophilic ligands, in particular for endogenous farnesol-like sesquiterpenoids (FLS) and, perhaps, for some steroid hormones as well. A novel paradigm, tentatively named ‘‘Calcigender’’ emerges. Its essence is: gender-specific physiotypes ensue from differential Ca2+-homeostasis enabled by genetic differences, farnesol/FLS and sex hormones. Apparently the body of reproducing females gets temporarily more poisoned by Ca2+ than the male one, a selective benefit rather than a disadvantage.

Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1–7 cells overexpressing G protein-coupled receptor 54

U Sukhbaatar, H Kanasaki, T Mijiddorj, Aki Oride, Ki Miyazaki
General and Comparative Endocrinology 194 (2013) 94–101

Kisspeptin signaling through its receptor is crucial for many reproductive functions. However, the molecular mechanisms and biomedical significance of the regulation of GnRH neurons by kisspeptin have not been adequately elucidated.
In the present study, we found that kisspeptin increases GnRH receptor (GnRHR) expression in a GnRH-producing cell line (GT1–7). Because cellular activity of G protein-coupled receptor 54 (GPR54) and GnRHR was limited in GT1–7 cells, we overexpressed these receptors to clarify receptor function.
Using luciferase reporter constructs, the activity of both the serum response element (Sre) promoter, a target for extracellular signal-regulated kinase (ERK), and the cyclic AMP (cAMP) response element (Cre) promoter were increased by kisspeptin. Although GnRH increased Sre promoter activity, the Cre promoter was not significantly activated by GnRH. Kisspeptin, but not GnRH, increased cAMP accumulation in these cells. Kisspeptin also increased the transcriptional activity of GnRHR; however, the effect of GnRH on the GnRHR promoter was limited and not significant. Transfection of GT1–7 cells with constitutively active MEK kinase (MEKK) and protein kinase A (PKA) increased GnRHR expression. In addition, GnRHR expression was further increased by co-overexpression of MEKK and PKA. The Cre promoter, but not the Sre promoter, was also further activated by co-overexpression of MEKK and PKA. GnRH significantly increased the activity of the GnRHR promoter in the presence of cAMP.
The present findings suggest that kisspeptin is a potent stimulator of GnRHR expression in GnRH-producing neurons in association with ERK and the cAMP/PKA pathways

Role of leptin in the regulation of sterol/steroid biosynthesis in goose granulosa cells

Shenqiang Hu, Chao Gan, Rui Wen, Qihai Xiao, Hua Gou, Hehe Liu, et al.
Theriogenology 82 (2014) 677–685

Leptin is critical for reproductive endocrinology. The aim of this study is to assess the expression patterns of leptin receptor (Lepr) during ovarian follicle development and to reveal the mechanism by which leptin affects steroid hormone secretion in goose granulosa cells. Transcripts of Lepr were ubiquitous in all tested tissues, with pituitary and adrenal glands being the predominant sites. Goose ovarian follicles were divided into several groups by diameter including prehierarchical (4 to 6, 6 to 8, and 8 to 10 mm) and hierarchical (F5–F1) follicles. Lepr gene expression was significantly higher in granulosa cells than in theca cells from follicles of 4 to 8 mm in diameter. Expression of Lepr in granulosa cells decreased gradually as follicles developed, with fluctuating expression in F5 and F3 follicles. Lepr mRNA in theca cells underwent a slight decrease from the 6- to 8-mm cohorts to F5 follicle and then exhibited a transient increase and declined later. In vitro experiments in cultured goose granulosa cells showed that estradiol release was significantly stimulated, whereas progesterone increased slightly and testosterone decreased dramatically after leptin treatment. In accordance with the data for steroids, expression of Lepr, Srebp1, Cyp51, StAR, and Cyp19a1 were induced by the addition of leptin, and the concomitant changes in Hmgcs1, Dhcr24, Cyp11a1, 17b-hsd, Cyp17, and 3b-hsd gene expression were seen. These results suggested that leptin is involved in the development of goose ovarian follicles, and leptin’s effect on steroid hormone secretion could be due to altered sterol/steroidogenic gene expression via interaction with its receptor.

Progesterone and 17[1]-estradiol regulate expression ofnesfatin-1/NUCB2 in mouse pituitary gland

Yiwa Chung, Jinhee Kim, Eunji Im, Heejeong Kim, Hyunwon Yang
Peptides 63 (2015) 4–9

tNesfatin-1 was first shown to be involved in the control of appetite and energy metabolism in the hypo-thalamus. Many recent reports have shown nesfatin-1 expression in various tissues including the pituitary gland, but its expression and regulation mechanisms in the pituitary gland are unclear. Therefore, first, we investigated the mRNA and protein expression of nesfatin-1 in the pituitary using qRT-PCR and Western blotting, respectively. Expression of NUCB2 mRNA and nesfatin-1 protein was higher in the pituitary gland than in other organs, and nesfatin-1 protein was localized in many cells in the anterior pituitary gland. Next, we investigated whether NUCB2 mRNA expression in the pituitary gland was regulated by sex steroid hormones secreted by the ovary. Mice were ovariectomized and injected with progesterone (P4) and 17[1]-estradiol (E2). The expression of NUCB2 in the pituitary gland was dramatically decreased after ovariectomy and increased with injection of P4 and E2, respectively. The in vitro experiment to elucidate the direct effect of P4 and E2 on NUCB2 mRNA expression showed NUCB2 mRNA expression was significantly increased with E2 and decreased with P4 alone and P4 plus E2 in cultured pituitary tissue. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the mouse pituitary and was regulated by P4 and E2. These data suggest that reproductive-endocrine regulation through hypothalamus–pituitary–ovary axis may contribute to nesfatin-1/NUCB2 expression in the pituitary gland.

The role of TGF-β/Smad signaling in dopamine agonist-resistant prolactinomas
Zhenye Li, Qian Liu1, Chuzhong Li, Xuyi Zong, Jiwei Bai, YoutuWu, et al.
Molecular and Cellular Endocrinology 402 (2015) 64–71

Background: Prolactinomas are the most common secretory pituitary adenomas. The first line of treatment involves dopamine agonists (DAs); however, a subset of patients is resistant to such therapy. Recent studies suggest that dopamine can up-regulate TGF-β1 synthesis in rat pituitary lactotrophs whereas estradiol down-regulates TGF-β1. To date, the role of TGF-β/Smad signaling in DAs-resistant prolactinomas has not been explored.
Methods: High-content screening (HCS) techniques, qRT-PCR,Western blot, immunofluorescence and ELISA, were performed to determine the role of TGF-β/Smad signaling in DAs-resistant prolactinomas.
Results: We reported a significant down-regulation of TGF-β/Smad signaling cascade in DAs-resistant prolactinomas compared to normal human anterior pituitaries. Following treatment with TGF-β1, the dopamine agonist, bromocriptine, and the estrogen antagonist (ER), fulvestrant in GH3 cells, we found that TGF-β1 and fulvestrant caused significant cytotoxicity in a dose- and time-dependent manner and activated Smad3 was detected following exposure to TGF-β1 and fulvestrant. In addition, treating GH3 cells with fulvestrant increased active TGF-β1 levels and decreased PRL levels in a dose-dependent manner.
Conclusion: TGF-β/Smad signaling pathway may play an important role in DA-resistant prolactinomas and has the potential to be a viable target for the diagnosis and treatment of prolactinomas, particularly in patients who are resistant to Das.

Pituitary adenylate cyclase-activating polypeptide (PACAP) increases expression of the gonadotropin-releasing hormone (GnRH) receptor in GnRH-producing GT1-7 cells overexpressing PACAP type I receptor

Haruhiko Kanasaki, T Mijiddorj, U Sukhbaatar, Aki Oride, K Miyazaki
General and Comparative Endocrinology 193 (2013) 95–102

The present study demonstrates the action of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone (GnRH)-producing neuronal cells, GT1-7. Because we found the expression levels of PACAP type 1 receptor (PAC1R) to be low in these cells, we transfected them with PAC1R expression vector and observed the outcome. PACAP increased the activity of the serum response element (Sre) promoter, a target of extracellular signal-regulated kinase (ERK), as well as the cAMP response element (Cre) promoter in GT1-7 cells overexpressing PAC1R. We also observed ERK phosphorylation and cAMP accumulation upon PACAP stimulation. PACAP stimulated the promoter activity of GnRH receptor (GnRHR) with increasing levels of GnRHR proteins. Notably, the increase in GnRHR promoter activity from kisspeptin was potentiated in the presence of PACAP. A similar increasing effect of PACAP on the action of kisspeptin was observed for Cre promoter activity. On the other hand, the Sre promoter activated by kisspeptin was inhibited by co-treatment with kisspeptin and PACAP. Likewise, kisspeptin-increased GnRHR promoter activity and Cre promoter activity were both potentiated in the presence of cAMP, whereas the Sre promoter activated by kisspeptin was inhibited in the presence of cAMP. Our observations show that PACAP increases GnRHR expression and stimulates kisspeptin’s effect on GnRHR expression in association with the cAMP/PKA signaling pathway in GT1-7 cells overexpressing PAC1R. In addition, PACAP was shown to have an inhibitory effect on ERK-mediated kisspeptin action.

PACAP modulates GnRH signaling in gonadotropes

Lisa M. Halvorson
Molecular and Cellular Endocrinology 385 (2014) 45–55

Hypothalamic gonadotropin-releasing hormone is known to be critical for normal gonadotropin biosynthesis and secretion by the gonadotrope cells of the anterior pituitary gland. Additional regulation is provided by gonadal steroid feedback as well as by intrapituitary factors, such as activin and follistatin. Less well-appreciated is the role of pituitary adenylate-cyclase activating polypeptide (PACAP) as both a hypothalamic–pituitary releasing factor as well as an autocrine–paracrine factor within the pituitary. PACAP regulates gonadotropin expression alone and through modulation of GnRH responsiveness achieved by increases in GnRH receptor expression and interactions at the level of intracellular signaling pathways. In addition to direct effects on the gonadotrope, PACAP stimulates follistatin secretion by the folliculostellate cells and thereby contributes to differential expression of the gonadotropin subunits. Conversely, GnRH augments the ability of PACAP to regulate gonadotrope function by increasing pituitary PACAP and PACAP receptor expression. This review will summarize the current understanding of the mechanisms by which PACAP modulates gonadotrope function, with a focus on interactions with GnRH.

Grass carp prolactin: Molecular cloning, tissue expression, intrapituitary autoregulation by prolactin and paracrine regulation by growth hormone and luteinizing hormone

Chengyuan Lin, Xue Jiang, Guangfu Hu, W.K.W. Ko, A.O.L.Wong
Molecular and Cellular Endocrinology 399 (2015) 267–283

Prolactin (PRL), a pituitary hormone with diverse functions, is well-documented to be under the control of both hypothalamic and peripheral signals. Intrapituitary modulation of PRL expression via autocrine/paracrine mechanisms has also been reported, but similar information is still lacking in lower vertebrates. To shed light on autocrine/paracrine regulation of PRL in fish model, grass carp PRL was cloned and its expression in the carp pituitary has been confirmed. In grass carp pituitary cells, local secretion of PRL could suppress PRL release with concurrent rises in PRL production and mRNA levels. Paracrine stimulation by growth hormone (GH) was found to up-regulate PRL secretion, PRL production and PRL transcript expression, whereas the opposite was true for the local actions of luteinizing hormone (LH). Apparently, local interactions of PRL, GH and LH via autocrine/paracrine mechanisms could modify PRL production in carp pituitary cells through differential regulation of PRL mRNA stability and gene transcription.

Gonadotropin inhibitory hormone (GnIH) as a regulator of gonadotropes

Iain J. Clarke, Helena C. Parkington
Molecular and Cellular Endocrinology 385 (2014) 36–44

Gonadotropin inhibitory hormone (GnIH) has emerged as a negative regulator of gonadotrope function in a range of species. In rodents, such as rats and mice, GnIH exerts influence upon GnRH cells within the brain. In other species, however, the peptide is secreted into hypophysial portal blood to act on pituitary gonadotropes. In particular, a series of studies in sheep have demonstrated potent actions at the level of the pituitary gland to counteract the function of GnRH in terms of the synthesis and secretion of gonadotropins. This review focuses on the action of GnIH at the level of the gonadotrope.

GPR30 mediates anorectic estrogen-induced STAT3 signaling in the hypothalamus

Obin Kwona,, Eun Seok Kang, Insook Kim, Sora Shina, Mijung Kima, et al.
Metabolism Clinical Exper 2014: 63: 1455–1461

Objective. Estrogen plays an important role in the control of energy balance in the hypothalamus. Leptin-independent STAT3 activation (i.e., tyrosine705-phosphorylation of STAT3, pSTAT3) in the hypothalamus is hypothesized as the primary mechanism of the estrogen-induced anorexic response. However, the type of estrogen receptor that mediates this regulation is unknown. We investigated the role of the G protein-coupled receptor 30 (GPR30) in estradiol (E2)-induced STAT3 activation in the hypothalamus.
Materials/methods. Regulation of STAT3 activation by E2, G-1, a specific agonist of GPR30 and G-15, a specific antagonist of GPR30 was analyzed in vitro and in vivo. Effect of GPR30 activation on eating behavior was analyzed in vivo.
Results. E2 stimulated pSTAT3 in cells expressing GPR30, but not expressing estrogen receptor ERα and ERβ. G-1 induced pSTAT3, and G-15 inhibited E2-induced pSTAT3 in primary cultures of hypothalamic neurons. A cerebroventricular injection of G-1 increased pSTAT3 in the arcuate nucleus of mice, which was associated with a decrease in food intake and body weight gain.
Conclusions. These results suggest that GPR30 is the estrogen receptor that mediates the anorectic effect of estrogen through the STAT3 pathway in the hypothalamus.

Leptin influences estrogen metabolism and accelerates prostate cell proliferation

CN Habib, AM Al-Abd, Mai F. Tolba, AE Khalifa, Alaa Khedr, et al.
Life Sciences 121 (2015) 10–15

Aim: The present study was designed to investigate the effect of leptin on estrogen metabolism in prostatic cells.
Main methods: Malignant (PC-3) and benign (BPH-1) human prostate cells were treated with 17-β-hydroxyestradiol (1 μM) alone or in combination with leptin (0.4, 4, 40 ng/ml) for 72 h. Cell proliferation assay, immunocytochemical staining of estrogen receptor (ER), liquid chromatography–tandem mass spectrometry method (LC–MS) and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) were used.
Key findings: Cell proliferation assay demonstrated that leptin caused significant growth potentiation in both cells. Immunocytochemical staining showed that leptin significantly increased the expression of ER-α and decreased that of ER-β in PC-3 cells. LC–MS method revealed that leptin increased the concentration 4-hydroxyestrone and/or decreased that of 2-methoxyestradiol, 4-methoxyestradiol and 2-methoxyestrone. Interestingly, RT-PCR showed that leptin significantly up-regulated the expression of aromatase and cytochrome P450 1B1 (CYP1B1) enzymes; however down-regulated the expression of catechol-o-methyltransferase (COMT) enzyme.
Significance: These data indicate that leptin-induced proliferative effect in prostate cells might be partly attributed to estrogen metabolism. Thus, leptin might be a novel target for therapeutic intervention in prostatic disorders.

Ovariectomy in young prepubertal dairy heifers causes complete suppression of mammary progesterone receptors

B.T. Velayudhan, B.P. Huderson, S.E. Ellis, C.L. Parsons, R.C. Hovey, et al.
Domestic Animal Endocrinology 51 (2015) 8–18

Mammary growth and development depends on ovarian steroids and particularly interaction of estrogen and progesterone with their intracellular receptors. The objectives of this study were to determine the effect of ovariectomy on the expression of protein and messenger RNA for estrogen receptor-alpha (ESR1) and progesterone receptor (PGR) and their relation to mammary ductal development and cell proliferation. Prepubertal Holstein heifers 2, 3, or 4 mo of age were randomly assigned to one of 2 treatments, ovariectomized (OVX; n ¼ 8) or sham operated (INT; n ¼ 12). Mammary parenchymal (PAR) tissue samples were harvested 30 d after surgery. Localization and quantitation of ESR1 and PGR in PAR were determined by immunohistochemistry and quantitative multispectral imaging. Relative messenger RNA expression of ESR1 and PGR in PAR was measured by quantitative real time polymerase chain reaction. We observed the complete absence of PGR-positive epithelial cell nuclei and reduced PGR transcript abundance in mammary parenchyma of OVX heifers. The percent of epithelial cells expressing ESR1 did not differ by treatment but was decreased with age. However, average intensity of ESR1 expression per cell was reduced in OVX heifers. The abundance of Ki67 labeled epithelial cells and stromal cells was reduced after ovariectomy. These data suggest that reduced mammary development after ovariectomy may be mediated by loss of PGR expression and reduced ESR1 expression in positive cells. A presumptive relationship with ovarian-derived circulating estradiol remains unresolved, but data suggest other ovarian-derived agents may play a role. Use of specific antagonists to manipulate expression or action of PGR and ESR1 receptors should provide direct evidence for roles of these receptors in prepubertal bovine mammary development.

Growth Hormone and IGF 1..2

IGF1R blockade with ganitumab results in systemic effects on the GH-IGF axis in mice

Moody, G., Beltran, P.J., Mitchell, P., (…), Cohen, P., Calzone, F.J.
2014 Journal of Endocrinology 221 (1), pp. 145-155

Ganitumab is a fully human MAB to the human type 1 IGF receptor (IGF1R). Binding assays showed that ganitumab recognized murine IGF1R with sub-nanomolar affinity (KDZ0.22 nM) and inhibited the interaction of murine IGF1R with IGF1 and IGF2. Ganitumab inhibited IGF1-induced activation of IGF1R in murine lungs and CT26 murine colon carcinoma cells and tumors. Addition of ganitumab to 5-fluorouracil resulted in enhanced inhibition of tumor growth in the CT26 model. Pharmacological intervention with ganitumab in naïve nude mice resulted in a number of physiological changes described previously in animals with targeted deletions of Igf1 and Igf1r, including inhibition of weight gain, reduced glucose tolerance and significant increase in serum levels of GH, IGF1 and IGFBP3. Flow cytometric analysis identified GR1/CD11b-positive cells as the highest IGF1R-expressing cells in murine peripheral blood. Administration of ganitumab led to a dose-dependent, reversible decrease in the number of peripheral neutrophils with no effect on erythrocytes or platelets. These findings indicate that acute IGF availability for its receptor plays a critical role in physiological growth, glucose metabolism and neutrophil physiology and support the presence of a pituitary IGF1R-driven negative feedback loop that tightly regulates serum IGF1 levels through Gh signaling.

Determinants of GH resistance in malnutrition

Fazeli, P.K., Klibanski, A.

2014 Journal of Endocrinology 220 (3), pp. R57-R65

States of undernutrition are characterized by GH resistance. Decreased total energy intake, as well as isolated protein-calorie malnutrition and isolated nutrient deficiencies, result in elevated GH levels and low levels of IGF1. We review various states of malnutrition and a disease state characterized by chronic undernutrition – anorexia nervosa – and discuss possible mechanisms contributing to the state of GH resistance, including fibroblast growth factor 21 and Sirtuin 1. We conclude by examining the hypothesis that GH resistance is an adaptive response to states of undernutrition, in order to maintain euglycemia and preserve energy.

Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels

Matz-Soja, M., Aleithe, S., Marbach, E., (…), Kratzsch, J., Gebhardt, R.
2014 Cell Communication and Signaling 12 (1), 11

Background: Hedgehog signaling plays an important role in embryonic development, organogenesis and cancer. In the adult liver, Hedgehog signaling in non-parenchymal cells has been found to play a role in certain disease states such as fibrosis and cirrhosis. However, whether the Hedgehog pathway is active in mature healthy hepatocytes and is of significance to liver function are controversial.
Findings. Two types of mice with distinct conditional hepatic deletion of the Smoothened gene, an essential co-receptor protein of the Hedgehog pathway, were generated for investigating the role of Hedgehog signaling in mature hepatocytes. The knockout animals (KO) were inconspicuous and healthy with no changes in serum transaminases, but showed a slower weight gain. The liver was smaller, but presented a normal architecture and cellular composition. By quantitative RT-PCR the downregulation of the expression of Indian hedgehog (Ihh) and the Gli3 transcription factor could be demonstrated in healthy mature hepatocytes from these mice, whereas Patched1 was upregulated. Strong alterations in gene expression were also observed for the IGF axis. While expression of Igf1 was downregulated, that of Igfbp1 was upregulated in the livers of both genders. Corresponding changes in the serum levels of both proteins could be detected by ELISA. By activating and inhibiting the transcriptional output of Hedgehog signaling in cultured hepatocytes through siRNAs against Ptch1 and Gli3, respectively, in combination with a ChIP assay evidence was collected indicating that Igf1 expression is directly dependent on the activator function of Gli3. In contrast, the mRNA level of Igfbp1 appears to be controlled through the repressor function of Gli3, while that of Igfbp2 and Igfbp3 did not change. Interestingly, body weight of the transgenic mice correlated well with IGF-I levels in both genders and also with IGFBP-1 levels in females, whereas it did not correlate with serum growth hormone levels.
Conclusions: Our results demonstrate for the first time that Hedgehog signaling is active in healthy mature mouse hepatocytes and that it has considerable importance for IGF-I homeostasis in the circulation. These findings may have various implications for mouse physiology including the regulation of body weight and size, glucose homeostasis and reproductive capacity.

How IGF-1 activates its receptor

Jennifer M Kavran, JM McCabe, PO Byrne, MK Connacher, et al.
eLife 2014;10.7554/eLife.03772

The Type I Insulin-like Growth Factor Receptor (IGF1R) is involved in growth and  survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity.
We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions.
The key step triggered by ligand binding is thus autophosphorylation.

Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived, small-bodied mammals

Kalina T.J. Davies, Georgia Tsagkogeorga, Nigel C. Bennett, Liliana M. Dávalos, et al.
Gene 549 (2014) 228–236

Mammals typically display a robust positive relationship between lifespan and body size. Two groups that deviate markedly from this pattern are bats and African mole-rats, with members of both groups being extremely long-lived given their body size, with the maximum documented lifespan for many species exceeding 20 years.
A recent genomics study of the exceptionally long-lived Brandt’s bat, Myotis brandtii (41 years), suggested that its longevity and small body size may be at least partly attributed to key amino acid substitutions in the transmembrane domains of the receptors of growth hormone (GH) and insulin-like growth factor 1 (IGF1). However, whereas elevated longevity is likely to be common across all 19 bat families, the reported amino acid substitutions were only observed in two closely related bat families.
To test the hypothesis that an altered GH/IGF1 axis relates to the longevity of African mole-rats and bats, we compared and analyzed the homologous coding gene sequences in genomic and transcriptomic data from 26 bat species, five mole-rats and 38 outgroup species.
Phylogenetic analyses of both genes recovered the majority of nodes in the currently accepted species tree with high support. Compared to other clades, such as primates and carnivores, the bats and rodents had longer branch lengths. The single 24 amino acid transmembrane domain of IGF1Rwas found to be more conserved across mammals compared to that of GHR. Within bats, considerable variation in the transmembrane domain of GHR was found, including a previously unreported deletion in Emballon uridae. The transmembrane domains of rodents were found to be more conserved, with mole-rats lacking uniquely conserved amino acid substitutions. Molecular evolutionary analyses showed that both genes were under purifying selection in bats and mole-rats.
Our findings suggest that while the previously documented mutations may confer some additional lifespan to Myotis bats, other, as yet unknown, genetic differences are likely to account for the long lifespans observed in many bat and mole-rat species.

Treatment with N- And C-terminal peptides of parathyroid hormone-related
protein partly compensate the skeletal abnormalities in IGF-I deficient mice

Rodríguez-de La Rosa, L., López-Herradón, A., Portal-Núñez, S., (…), Varela-Nieto, I., Esbrit, P.
2014 PLoS ONE 9 (2), e87536

Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36) and PTHrP (107-111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 mg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/ receptor activator of NF-?B ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1- null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1- 36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.

Paternally expressed, imprinted insulin-like growth factor-2 in chorionic villi correlates significantly with birth weight

Demetriou, C., Abu-Amero, S., Thomas, A.C., (…), Stanier, P., Moore, G.E.
2014 PLoS ONE 9 (1), e85454

Context: Fetal growth involves highly complex molecular pathways. IGF2 is a key paternally expressed growth hormone that is critical for in utero growth in mice. Its role in human fetal growth has remained ambiguous, as it has only been studied in term tissues. Conversely the maternally expressed growth suppressor, PHLDA2, has a significant negative correlation between its term placental expression and birth weight.
Objective: The aim of this study is to address the role in early gestation of expression of IGF1, IGF2, their receptors IGF1R and IGF2R, and PHLDA2 on term birth weight.
Design: Real-time quantitative PCR was used to investigate mRNA expression of IGF1, IGF2, IGF1R, IGF2R and PHLDA2 in chorionic villus samples (CVS) (n = 260) collected at 11-13 weeks’ gestation. Expression was correlated with term birth weight using statistical package R including correction for several confounding factors. Results: Transcript levels of IGF2 and IGF2R revealed a significant positive correlation with birth weight (0.009 and 0.04, respectively). No effect was observed for IGF1, IGF1R or PHLDA2 and birth weight. Critically, small for gestational age (SGA) neonates had significantly lower IGF2 levels than appropriate for gestational age neonates (p = 3·6610-7).
Interpretation: Our findings show that IGF2 mRNA levels at 12 weeks gestation could provide a useful predictor of future fetal growth to term, potentially predicting SGA babies. SGA babies are known to be at a higher risk for type 2 diabetes. This research reveals an imprinted, parentally driven rheostat for in utero growth

Jensen, R.B., Thankamony, A., O’Connell, S.M., (…), Dunger, D.B., Juul, A.
2014 European Journal of Endocrinology 171 (4), pp. 509-518

A randomised controlled trial evaluating IGF1 titration in contrast to current GH dosing strategies in children born small for gestational age: The North European Small-for-Gestational-Age Study

Minireview: Mechanisms of growth hormone- mediated gene regulation

Chia, D.J.
2014 Molecular Endocrinology 28 (7), pp. 1012-1025

GH exerts a diverse array of physiological actions that include prominent roles in growth and metabolism, with a major contribution via stimulating IGF-1 synthesis. GH achieves its effects by influencing gene expression profiles, and Igf1 is a key transcriptional target of GH signaling in liver and other tissues. This review examines the mechanisms of GH-mediated gene regulation that begin with signal transduction pathways activated downstream of the GH receptor and continue with chromatin events at target genes and additionally encompasses the topics of negative regulation and cross talk with other cellular inputs. The transcription factor, signal transducer and activator of transcription 5b, is regarded as the major signaling pathway by which GH achieves its physiological effects, including in stimulating Igf1 gene transcription in liver. Recent studies exploring the mechanisms of how activated signal transducer and activator of transcription 5b accomplishes this are highlighted, which begin to characterize epigenetic features at regulatory domains of the Igf1 locus. Further research in this field offers promise to better understand the GH-IGF-1 axis in normal physiology and disease and to identify strategies to manipulate the axis to improve human health.

Management of endocrine disease: GH excess: diagnosis and medical therapy.

Andersen, M.
2014 European journal of endocrinology / European Federation of Endocrine Societies 170 (1), pp. R31-41

Acromegaly is predominantly caused by a pituitary adenoma, which secretes an excess of GH resulting in increased IGF1 levels. Most of the GH assays used currently measure only the levels of the 22 kDa form of GH. In theory, the diagnostic sensitivity may be lower compared with the previous assays, which have used polyclonal antibodies. Many GH-secreting adenomas are plurihormonal and may co-secrete prolactin, TSH and ?-subunit. Hyperprolactinemia is found in 30-40% of patients with acromegaly, and hyperprolactinemia may occasionally be diagnosed before acromegaly is apparent. Although trans-sphenoidal surgery of a GH-secreting adenoma remains the first treatment at most centers, the role of somatostatin analogues, octreotide long-acting repeatable and lanreotide Autogel as primary therapy is still the subject of some debate. Although the normalization of GH and IGF1 levels is the main objective in all patients with acromegaly, GH and IGF1 levels may be discordant, especially during somatostatin analogue therapy. This discordance usually takes the form of high GH levels and an IGF1 level towards the upper limit of the normal range. Pasireotide, a new somatostatin analogue, may be more efficacious in some patients, but the drug has not yet been registered for acromegaly. Papers published on pasireotide have reported an increased risk of diabetes mellitus due to a reduction in insulin levels. Pegvisomant, the GH receptor antagonist, is indicated – alone or in combination with a somatostatin analogue – in most patients who fail to enter remission on a somatostatin analogue. Dopamine-D2-agonists may be effective as monotherapy in a few patients, but it may prove necessary to apply combination therapy involving a somatostatin analogue and/or pegvisomant.

Characterization and prevalence of severe primary IGF1 deficiency in a large cohort of French children with short stature

Teissier, R., Flechtner, I., Colmenares, A., (…), Souberbielle, J.C., Polak, M
2014 European Journal of Endocrinology 170 (6), pp. 847-854

Objective: The prevalence of severe primary IGF1 deficiency (IGFD) is unclear. IGFD must be identified promptly as treatment with recombinant human IGF1 (rhIGF1) is now available. Our objective was to characterize and assess the prevalence of severe primary IGFD in a large cohort of patients evaluated for short stature at a pediatric endocrinology unit in France.
Design: Observational study in a prospective cohort.
Methods: Consecutive patients referred to our unit between 2004 and 2009 for suspected slow statural growth were included. Patients were classified into eight etiological categories. IGFD was defined by height ? -3 SDS, serum IGF1 levels <2.5th percentile, GH sufficiency, and absence of causes of secondary IGFD.
Results: Out of 2546 patients included, 337 (13.5%) were born small for gestational age and 424 (16.9%) had idiopathic short stature. In these two categories, we identified 30 patients who met our criterion for IGFD (30/2546, 1.2%). In these 30 patients, we assessed the response to IGF1 generation test, time course of IGF1 levels, and efficiency of GH replacement therapy. The results indicated that only four of the 30 children were definite or possible candidates for rhIGF1 replacement therapy.
Conclusion: The prevalence of severe primary IGFD defined using the standard criterion for rhIGF1 treatment was 1.2%, and only 0.2% of patients were eligible for rhIGF1 therapy.

GH signaling in skeletal muscle and adipose tissue in healthy human subjects: Impact of gender and age

Vestergaard, P.F., Vendelbo, M.H., Pedersen, S.B., (…), Jessen, N., Jorgensen, J.O.L.
2014 European Journal of Endocrinology 171 (5), pp. 623-631

Objective: The mechanisms underlying the impact of age and gender on the GH-IGF1 axis remain unclear. We tested the hypothesis that age and gender have impacts on GH signaling in human subjects in vivo.
Design: A total of 20 healthy non-obese adults (‘young group’ <30 years (5F/5M) and ‘old group’ >60 years (5F/5M)) were studied after: i) an i.v. GH bolus (0.5 mg) and ii) saline.
Methods: Muscle and fat biopsies were obtained after 30 and 120 min. Total and phosphorylated STAT5B proteins, gene expression of IGF1, SOCS1, SOCS2, SOCS3 and CISH, body composition, VO2max, and muscle strength were measured. Results: In the GH-unstimulated state, women displayed significantly elevated levels of CISH mRNA in muscle (P=0.002) and fat (P=0.05) and reduced levels of IGF1 mRNA in fat. Phosphorylated STAT5B (pSTAT5b) was maximally increased in all subjects 30 min after GH exposure and more pronounced in women when compared with men (P=0.01). IGF1, SOCS1, SOCS2, SOCS3, and CISH mRNA expression increased significantly in muscle after 120 min in all subjects with no impact of age and gender. GH-induced pSTAT5b correlated inversely with lean body mass (LBM; r=-0.56, P Z0.01) and positively with the CISH mRNA response (r=0.533, P=0.05).
Conclusion: i) GH signaling in muscle and fat after a single GH bolus in healthy human subjects is age independent, ii) we hypothesize that constitutive overexpression of CISH may contribute to the relative GH resistance in women, and iii) experimental studies on the impact of sex steroid administration and physical training on GH signaling in human subjects in vivo are required.

Direct stimulation of bone mass by increased GH signaling in the osteoblasts of Socs2-/- mice

Dobie, R., MacRae, V.E., Huesa, C., (…), Ahmed, S.F., Farquharson, C.
2014 Journal of Endocrinology 223 (1), pp. 93-106

The suppressor of cytokine signaling (Socs2-/-)-knockout mouse is characterized by an overgrowth phenotype due to enhanced GH signaling. The objective of this study was to define the Socs2-/- bone phenotype and determine whether GH promotes bone mass via IGF1-dependent mechanisms. Despite no elevation in systemic IGF1 levels, increased body weight in 4-week-old Socs2-/- mice following GH treatment was associated with increased cortical bone area (Ct.Ar) (P<0.01). Furthermore, detailed bone analysis of male and female juvenile and adult Socs2-/- mice revealed an altered cortical and trabecular phenotype consistent with the known anabolic effects of GH. Indeed, male Socs2-/- mice had increased Ct.Ar (P<0.05) and thickness associated with increased strength. Despite this, there was no elevation in hepatic Igf1 expression, suggesting that the anabolic bone phenotype was the result of increased local GH action. Mechanistic studies showed that in osteoblasts and bone of Socs2-/- mice, STAT5 phosphorylation was significantly increased in response to GH. Conversely, overexpression of SOCS2 decreased GH-induced STAT5 signaling. Although an increase in Igf1 expression was observed in Socs2-/- osteoblasts following GH, it was not evident in vivo. Igf1 expression levels were not elevated in response to GH in 4-week-old mice and no alterations in expression was observed in bone samples of 6-week-old Socs2-/- mice. These studies emphasize the critical role of SOCS2 in controlling the local GH anabolic bone effects. We provide compelling evidence implicating SOCS2 in the regulation of GH osteoblast signaling and ultimately bone accrual, which maybe via mechanisms that are independent of IGF1 production in vivo.

Therapy of acromegalic patients exacerbated by concomitant type 2 diabetes requires higher pegvisomant doses to normalise IGF1 levels

Droste, M., Domberg, J., Buchfelder, M., (…), Stalla, G., Strasburger, C.J.
2014 European Journal of Endocrinology 171 (1), pp. 59-68

Objective: Acromegaly is associated with an increased prevalence of glucose metabolism disorders. Clinically confirmed diabetes mellitus is observed in approximately one quarter of all patients with acromegaly and is known to have a worse prognosis in these patients.
Design: Of 514 acromegalic patients treated with pegvisomant and recorded in the German Cohort of ACROSTUDY, 147 had concomitant diabetes mellitus. We analysed these patients in an observational study and compared patients with and without concomitant diabetes.
Results: Under treatment with pegvisomant, patients with diabetes mellitus rarely achieved normalization (64% in the diabetic cohort vs 75% in the non-diabetic cohort, P=0.04) for IGF1. Diabetic patients normalised for IGF1 required higher pegvisomant doses (18.9 vs 15.5 mg pegvisomant/day, P<0.01). Furthermore, those diabetic patients requiring insulin therapy showed a tendency towards requiring even higher pegvisomant doses to normalize IGF1 values than diabetic patients receiving only oral treatment (22.8 vs 17.2 mg pegvisomant/day, PZ0.11).
Conclusions: Hence, notable interdependences between the acromegaly, the glucose metabolism of predisposed patients and their treatment with pegvisomant were observed. Our data support recent findings suggesting that intra-portal insulin levels determine the GH receptor expression in the liver underlined by the fact that patients with concomitant diabetes mellitus, in particular those receiving insulin therapy, require higher pegvisomant doses to normalize IGF1. It is therefore important to analyse various therapy modalities to find out whether they influence the associated diabetes mellitus and/or whether the presence of diabetes mellitus influences the treatment results of an acromegaly therapy.

Sustained biochemical control in patients with acromegaly treated with lanreotide depot 120 mg administered every 4 weeks, or an extended dosing interval of 6 or 8 weeks: a pharmacokinetic approach

Edda Gomez-Panzani, S Chang, J Ramis, MM Landolfi, B Bakker
Research and Reports in Endocrine Disorders 2012:2 79–84

Objective: Lanreotide depot is a long-acting somatostatin receptor ligand injected deep subcutaneously every 4 weeks for the treatment of acromegaly. The aim of the presented studies was to establish whether lanreotide depot, administered to patients with acromegaly at an extended dosing interval of 6 or 8 weeks, is effective in maintaining appropriate serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels, with acceptable tolerability.
Methods: Two studies were conducted. Study B1 compared lanreotide depot 120 mg (every 4, 6, or 8 weeks) with lanreotide microparticle formulation 30 mg (every 7, 10, or 14 days) in 98 patients who had a GH level of #2.5 ng/mL and normalized IGF-1. Study B2 evaluated lanreotide depot 120 mg administered to 64 patients every 8 weeks, after which the dosing interval was adjusted based on GH levels.
Results: Mean lanreotide trough serum concentrations at steady state for all dosing intervals were .1.13 ng/mL, shown to achieve a GH level of #2.5 ng/mL. In Study B1, following treatment with lanreotide depot given every 6 or 8 weeks, 87.5% and 93.9% of patients, respectively, had normalized GH, whereas 83.3% and 88.5% of patients, respectively, had both normalized GH and IGF-1. In Study B2, 88.9% had normalized GH and 42.9% of patients had normalized GH and IGF-1 following lanreotide depot every 8 weeks. Gastrointestinal disorders, generally mild/moderate in severity, were the most common adverse events.
Conclusion: In the studies presented, lanreotide depot 120 mg every 4, 6, or 8 weeks provided effective hormonal control with acceptable safety. An extended dosing interval is a feasible approach for patients adequately controlled with lanreotide depot 60 or 90 mg every 4 weeks.

The endocrine effects of acylated and des-acylated ghrelin

David E Andrich, K Cianflone, Alain-Steve Comtois, S Lalonde, DH St-Pierre
Research and Reports in Endocrine Disorders 2012:2 31–40

Acylated ghrelin is one of the few peptides known whose isolation and characterization follow the description of its receptor and its basic biological functions. Characterized initially for its somatotrophic properties, ghrelin was shown later to exert various effects on other important physiological functions in mammals, such as appetite, gastric acid secretion, gut motility, insulin sensitivity, adiposity, and energy expenditure. Further, ghrelin influences cardiac function, reproduction, and the immune system as well. Here we present an overview of the discovery and subsequent development of ghrelin as an important peptide hormone involved in the control of energy metabolism in humans and other mammals. Recently reported effects of acylated ghrelin on glucose/lipid uptake, de novo lipogenesis, gluconeogenesis, lipid-droplet formation, fatty acid transport into mitochondria, and mitochondrial activity are particularly emphasized and discussed

Regulatory neuropeptides (ghrelin, obestatin and nesfatin-1) levels in serum and reproductive tissues of female and male rats with fructose-induced metabolic syndrome

Zekiye Catak, S Aydin, I Sahin, T Kuloglu, A Aksoy, AF Dagli
Neuropeptides 48 (2014) 167–177

Although, the exact mechanisms underlying the development of the metabolic syndrome (MetS) are not still completely understood, obesity, circulated peptide hormone levels and their interaction with genetic factors are considered largely responsible. The purpose of this study is to explore how the levels of ghrelin, obestatin (OBS) and NUCB2/nesfatin-1 (NES)/NUCB2 change in serum and the reproductive tissues of female and male rats with fructose-induced metabolic syndrome, and whether the levels of each hormone is correlated with the hormones involved with fertility. Experiments were conducted on 5-week-old Sprague–Dawley male and female rats assigned to either a control group or a MetS group. Controls were fed standard rat food and water ad libitum, while the MetS group was fed standard food with 10% (v/v) fructose solution added to their drinking water for 12 weeks with a 12/12 h photoperiod circle. Then, all animals were sacrificed after a one night fast. Peptides levels in the serum and reproductive tissues of rats were studied using the ELISA method while the immunoreactivity of reproductive system peptide hormones were shown by immunohistochemical staining method. Furthermore, the other biochemical parameters were measured using Konelab-60 equipment and infertility hormones were measured with Immulite2000. Fasting serum insulin, glucose, triglyceride, alanine aminotransferase (ALT), gamma glutamyl transpeptidase (GGT), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) levels were statistically significantly higher, and the amount of high density lipoprotein cholesterol (HDL-C) was significantly lower, in the MetS groups. Serum and tissue supernatant NES levels were significantly higher in the rats with MetS than the control group. Ghrelin, OBS and NES were expressed in the cytoplasm, concentrated around the apical parts of the epithelial cells in the reproductive tissues of the rats. The amounts of ghrelin were lower in the reproductive tissues of the animals with MetS, while NES levels in the same tissues increased. Obestatin also decreased, though not in the seminal glands.

Hypothalamus Role in Stress Response and Adaptability

Oxytocin mechanisms of stress response and aggression in a territorial finch

James L. Goodson, Sara E. Schrock, Marcy A. Kingsbury
Physiology & Behavior 141 (2015) 154–163

All jawed vertebrates produce a form of oxytocin (OT), and in birds, mammals and fish, OT is strongly associated with affiliation. However, remarkably few data are available on the roles of OT and OT receptors (OTRs) in aggression. Because OT and OTRs exert anxiolytic effects in mammals (although context-specific) and modulate stress coping, we hypothesized that OTR activation is at least permissive for territorial aggression. Indeed, we find that peripheral injections of an OTR antagonist significantly reduce male–male and female–female aggression in a highly territorial finch. This finding suggests the hypothesis that aggression is accompanied by an increase in transcriptional (Fos) activity of OT neurons, but contrary to this hypothesis, we find that dominant male residents do not elevate OT-Fos colocalization following an aggressive encounter and that OT-Fos colocalization in the preoptic area and hypothalamus correlates negatively with aggression. Furthermore, OT-Fos colocalization increases dramatically in males that were aggressively subjugated or pursued by a human hand, likely reflecting OT modulation of stress response. Because OT inhibits the hypothalamo–pituitary–adrenal axis, the antagonist effects may reflect the fact that aggressive birds and mammals tend to be hyporesponsive to stress. If this is correct, then 1) the observed effects of OTR antagonism may reflect alterations in corticosterone feedback to the brain rather than centrally mediated OTR effects, and 2) the negative correlation between OT-Fos colocalization and aggression may reflect the fact that more aggressive, stress hyporesponsive males require less inhibition of the hypothalamo–pituitary–adrenal axis than do less aggressive males, despite the requirement of that inhibition for the normal display of aggression.

Oxytocin induces social communication by activating arginine-vasopressin V1areceptors and not oxytocin receptors

Zhimin Song, Katharine E. McCann, John K. McNeill IV, et al.
Psychoneuroendocrinology (2014) 50, 14—19

Arginine-vasopressin (AVP) and oxytocin (OT) and their receptors are very similar in structure. As a result, at least some of the effects of these peptides may be     the result of crosstalk between their canonical receptors. The present study investigated this hypothesis by determining whether the induction of flank marking, a form of social communication in Syrian hamsters, by OT is mediated by the OT receptor or the AVP V1a receptor. Intracerebroventricular(ICV) injections of OT or AVP induced flank marking in a dose-dependent manner although the effects of AVP were approximately 100 times greater than those of OT. Injections of highly selective V1a receptor agonists but not OT receptor agonists induced flank marking, and V1a receptor antagonists but not OT receptor antagonists significantly inhibited the ability of OT to induce flank marking. Lastly, injection of alpha-melanocyte-stimulating hormone ([1]-MSH), a peptide that stimulates OT but not AVP release, significantly increased odor-induced flank marking, and these effects were blocked by a V1a receptor antagonist. These data demonstrate that OT induces flank marking by activating AVP V1a and not OT receptors, suggesting that theV1a receptor should be considered to be an OT receptor as well as an AVP receptor.

Levels of central oxytocin and glucocorticoid receptor and serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability

Xufeng Qiao, Yating Yan, Fadao Tai∗, Ruiyong Wu, Ping Hao, et al.
Behavioural Brain Research 274 (2014) 226–234

Sociability is the prerequisite to social living. Oxytocin and the hypothalamo-pituitary-adrenocortical axis mediate various social behaviors across different social contexts in different rodents. We hypothesized that they also mediate levels of non-reproductive social behavior. Here we explored naturally occurring variation in sociability through a social preference test and compared central oxytocin, glucocorticoid receptors, serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability.
We found that low-social voles showed higher levels of anxiety-like behavior in open field tests, and had more serum adrenocorticotropic hormone and corticosterone than high-social voles. High-social individuals had more glucocorticoid receptor positive neurons in the hippocampus and more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than low-social individuals.
Within the same level of sociability, females had more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than males. These results indicate that naturally occurring social preferences are associated with higher levels of central oxytocin and hippocampus glucocorticoid receptor and lower levels of anxiety and serum adrenocorticotropic hormone and corticosterone.

HPA axis genetic variation, pubertal status, and sex interact to predict amygdala and hippocampus responses to negative emotional faces in school-age children

David Pagliaccio, JL Luby, R Bogdan, A Agrawal, MS. Gaffrey, et al.
NeuroImage 109 (2015) 1–11

Accumulating evidence suggests a role for stress exposure, particularly during early life, and for variation in genes involved in stress response pathways in neural responsivity to emotional stimuli. Understanding how individual differences in these factors predict differences in emotional responsivity may be important for understanding both normative emotional development and for understanding the mechanisms underlying internalizing disorders, like anxiety and depression, that have often been related to increased amygdala and hippocampus responses to negatively valenced emotional stimuli. The present study examined whether stress exposure and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic–pituitary–adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predict individual differences in amygdala and hippocampus responses to fearful vs. neutral faces in school-age children (7–12 year olds; N = 107). Experience of more stressful and traumatic life events predicted greater left amygdala responses to negative emotional stimuli. Genetic profile scores interacted with sex and pubertal status to predict amygdala and hippocampus responses. Specifically, genetic profile scores were a stronger predictor of amygdala and hippocampus responses among pubertal vs. prepubertal children where they positively predicted responses to fearful faces among pubertal girls. and positively predicted responses to neutral faces among pubertal boys. The current results suggest that genetic and environmental stress-related factors may be important in normative individual differences in responsivity to negative emotional stimuli, a potential mechanism underlying internalizing disorders. Further, sex and pubertal development may be key moderators of the effects of stress-system genetic variation on amygdala and hippocampus responsivity, potentially relating to sex differences in stress-related psychopathology.

Hypothalamic—pituitary—adrenal axis activity in older persons with and without a depressive disorder

D. Rhebergen, N.C.M. Korten, B.W.J.H. Penninx, M.L. Stek, et al.
Psychoneuroendocrinology (2015) 51, 341—350

Background: Altered functioning of the hypothalamic—pituitary—adrenal axis (HPA-axis) has been associated with depression, but findings have been inconsistent. Among older depressed persons, both hyperactivity and hypo-activity of the HPA-axis were demonstrated. However, most studies were population-based studies, with single cortisol measurements, lacking insight into diurnal patterns of HPA-axis functioning. We aim to provide insight into functioning of the HPA-axis, assessed by various salivary cortisol samples, in depressed older adults and non-depressed controls.
Methods: Data were derived from the Netherlands Study of Depression in Older Persons. Cortisol levels of older persons without a lifetime diagnosis of depression and/or anxiety (n = 109) were compared with older persons with a 6-month major depression diagnosis (n = 311). ANCOVA analyses and random coefficient analysis on the four morning cortisol samples were performed. A possible U-shaped association between cortisol and depression status was examined.
Results: Depressed older persons showed higher morning cortisol levels at awakening (T1) and a less dynamic awakening response compared to non-depressed older persons. Dexamethasone suppression did not differ across groups. No U-shaped association between HPA-axis activity and depression was observed.
Conclusion: We demonstrated a hypercortisolemic state and a diminished ability to respond tothe stress of awakening among depressed older persons. Previously it was shown, that hyper-cortisolemic states may indicate a lifelong biological vulnerability for depression. Our findings expand on previous literature by demonstrating that in older persons the HPA-axis may become less responsive to stress, culminating in a further dysregulation of the diurnal cortisol-rhythm, superimposed on — possibly lifelong — hypercortisolemic states.

Hypothalamic–pituitary hormones during critical illness: a dynamic neuroendocrine response

Lies Langouche and Greet Van Den Berghe
Handbook of Clinical Neurology, Vol. 124 (3rd series)

Clinical Neuroendocrinology: Chapter 8

The early phase of illness is characterized by an actively secreting pituitary in the presence of low peripheral target hormones. The acute endocrine alterations can be considered beneficial, as they appear to delay costly anabolism and facilitate the release of substrates as fuel to vital tissues in order to improve survival. In the prolonged phase of critical illness, when recovery does not quickly ensue, a uniform hypothalamic–pituitary suppression occurs, further contributing to the low levels of peripheral target hormones. The ongoing hypercatabolism, despite the administration of artificial nutrition, leads to substantial loss of lean body mass. Ultimately, this may compromise recovery of vital functions and delay rehabilitation.

neuroendocrine changes during critical illness

neuroendocrine changes during critical illness

Simplified scheme of the neuroendocrine changes during the acute, chronic, and recovery phase of critical illness. In the acute phase of illness (first hours to a few days after onset), the secretory activity of the anterior pituitary is essentially maintained or amplified, whereas anabolic target organ hormones are inactivated. In the chronic phase of protracted critical illness (intensive care-dependent for weeks), the secretory activity of the anterior pituitary appears uniformly suppressed in relation to reduced circulating levels of target organ hormones. Impaired anterior pituitary hormone secretion allows the respective target organ hormones to decrease proportionately over time, with cortisol being a noteworthy exception, the circulating levels of which remain elevated. The onset of recovery is characterized by restored levels of target hormones and pituitary hormones. Shaded areas represent the range within which the hormonal changes occur.

GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner

Iris Kastenberger, Christoph Schwarzer
Hormones and Behavior 66 (2014) 628–636

The putative estrogen receptor GPER1 (the former orphan receptor GPR30) is discussed to be involved in emotional and cognitive functions and stress control. We recently described the induction of anxiety-like effects by the GPER1 agonist G-1 upon systemic injection into mice. To contribute to a better understanding of the role of GPER1 in anxiety and stress, we investigated germ-line GPER1 deficient mice. Our experiments revealed marked differences between the sexes. A mild but consistent phenotype of increased exploratory drive was observed in the home cage, the elevated plus maze and the light–dark choice test in male GPER1 KO mice. In contrast, female GPER1-KO mice displayed a less pronounced phenotype in these tests. Estrous-stage dependent mild anxiolytic-like effects were observed solely in the open field test. Notably, we observed a strong shift in acute stress coping behavior in the tail suspension test and basal corticosterone levels in different phases of the estrous cycle in female GPER1-KO mice. Our data, in line with previous reports, suggest that GPER1 is involved in anxiety and stress control. Surprisingly, its effects appear to be stronger in male than female mice.

Testosterone and Estradiol Differentially Affect Cell Proliferation in the Subventricular Zone of Young Adult Gonadectomized Male and Female Rats

Farinetti, S. Tomasi, B. Foglio, A. Ferraris, G. Ponti,  S. Gotti, et al.
Neuroscience 286 (2015) 162–170

Steroid hormones are important players to regulate adult neurogenesis in the dentate gyrus of the hippocampus, but their involvement in the regulation of the same phenomenon in the subventricular zone (SVZ) of the lateral ventricles is not completely understood.
Here, in male rats, we tested the existence of activational effects of testosterone (T) on cell proliferation in the adult SVZ. To this aim, three groups of male rats: castrated, castrated and treated with T, and controls were treated with 5-bromo-20-deoxyuridine (BrdU) and killed after 24 h. The density of BrdU-labeled cells was significantly lower in castrated animals in comparison to the other two groups, thus supporting a direct correlation between SVZ proliferation and levels of circulating T.
To clarify whether this effect is purely androgen-dependent, or mediated by the T metabolites, estradiol (E2) and  dihydrotestosterone (DHT), we evaluated SVZ proliferation in castrated males treated with E2, DHT and E2+ DHT, in comparison to T- and vehicle-treated animals, and sham-operated controls. The stereological analysis demonstrated that E2 and T, but not DHT, increase proliferation in the SVZ of adult male rats. Quantitative evaluation of cells expressing the endogenous marker of cell proliferation phosphorylated form of Histone H3 (PHH3), or the marker of highly dividing SVZ progenitors Mash1, indicated the effect of T/E2 is mostly restricted to SVZ proliferating progenitors. The same experimental protocol was repeated on ovariectomized female rats treated with E2 or T. In this case, no statistically significant difference was found among groups.
Overall, our results clearly show that the gonadal hormones T and E2 represent important mediators of cell proliferation in the adult SVZ. Moreover, we show that such an effect is restricted to males, supporting adult neurogenesis in rats is a process differentially modulated in the two sexes.

Neuroendocrine regulation of inflammation

Caroline J. Padro, Virginia M. Sanders
Seminars in Immunology 26 (2014) 357–368

The interaction between the sympathetic nervous system and the immune system has been documented over the last several decades. In this review, the neuroanatomical, cellular, and molecular evidence for neuroimmune regulation in the maintenance of immune homeostasis will be discussed, as well as the potential impact of neuroimmune dysregulation in health and disease.

mAbs and pituitary dysfunction: clinical evidence and pathogenic hypotheses

F Torino, A Barnabei, RM Paragliola, P Marchetti, R Salvatori and SM Corsello
European Journal of Endocrinology (2013) 169 R153–R164

mAbs are established targeted therapies for several diseases, including hematological and solid malignancies. These agents have shown a favorable toxicity profile, but, despite their high selectivity, new typical side-effects have emerged. In cancer patients, pituitary dysfunction may be mainly due to brain metastases or primary tumors and to related surgery and radiotherapy. Anticancer agents may induce hypopituitarism in patients cured for childhood cancers. These agents infrequently affect pituitary function in adult cancer patients. Notably, hypophysitis, a previously very rare disease, has emerged as a distinctive side-effect of ipilimumab and tremelimumab, two mAbs inhibiting the cytotoxic T-lymphocyte antigen-4 receptor, being occasionally seen with nivolumab, another immune checkpoint inhibitor. Enhanced antitumor immunity is the suggested mechanism of action of these drugs and autoimmunity the presumptive mechanism of their toxicity. Recently, ipilimumab has been licensed for the treatment of patients affected by metastatic melanoma. With the expanding use of these drugs, hypophysitis will be progressively encountered by oncologists and endocrinologists in clinical practice. The optimal management of this potentially life-threatening adverse event needs a rapid and timely diagnostic and therapeutic intervention. Hypopituitarism caused by these agents is rarely reversible, requiring prolonged or lifelong substitutive hormonal treatment. Further studies are needed to clarify several clinical and pathogenic aspects of this new form of secondary pituitary dysfunction.

Aberrant gonadotropin-releasing hormone receptor (GnRHR) expression and its regulation of CYP11B2 expression and aldosterone production in adrenal aldosterone-producing adenoma (APA)

Yasuhiro Nakamura, NG. Hattangady, Ping Ye, F Satoh, Ryo Morimoto, et al.
Molecular and Cellular Endocrinology 384 (2014) 102–108

Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P = 0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH  (100 nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA.

Additional sources:

Lies Langouche and Greet Van Den Berghe. Chapter 8. Hypothalamic–pituitary hormones during critical illness: a dynamic neuroendocrine response. In Handbook of Clinical Neurology, Vol. 124 (3rd series). Clinical Neuroendocrinology

Critical illness is the medical condition in which a patient, because of major surgery or severe illness, requires immediate intensive medical support of vital organ functions in order to survive. Independent of the underlying condition, critical illness is characterized by a uniform dysregulation of the hypothalamic–pituitary–peripheral axes. In the majority of these axes a clear biphasic pattern can be distinguished (Fig. 8.1). The early phase of illness is characterized by an actively secreting pituitary in the presence of low peripheral target hormones. The acute endocrine alterations can be considered beneficial, as they appear to delay costly anabolism and facilitate the release of substrates as fuel to vital tissues in order to improve survival. In the prolonged phase of critical illness, when recovery does not quickly ensue, a uniform hypothalamic–pituitary suppression occurs, further contributing to the low levels of peripheral target hormones. The ongoing hypercatabolism, despite the administration of artificial nutrition, leads to substantial loss of lean body mass. Ultimately, this may compromise recovery of vital functions and delay rehabilitation. The severity of the neuroendocrine alterations is associated with a high risk of morbidity and mortality in the intensive care unit (ICU).

  1. Fliers, A. Boelen, and A.S.P. Van Trotsenburg. Chapter 9. Central regulation of the hypothalamo–pituitary–thyroid (HPT) axis: focus on clinical aspects. In Handbook of Clinical Neurology, Vol. 124 (3rd series). Clinical Neuroendocrinology

The tripeptide thyrotropin-releasing hormone (TRH) was first isolated from the hypothalamus in the late 1960s, and its neuronal expression in various hypothalamic nuclei was demonstrated when immunocytochemistry became available for neuroanatomic studies in the 1970s. These studies helped establish the pivotal role for TRH neurons in the hypothalamic paraventricular nucleus (PVN) in the neuroendocrine regulation of the hypothalamo–pituitary–thyroid (HPT) axis. The demonstration of an inverse relationship between plasma thyroid hormone concentrations and TRH mRNA expression in the PVN during experimentally induced hyper- and hypothyroidism (Segerson et al., 1987) confirmed the central role of TRH neurons in the HPT axis as a classic neuroendocrine feedback loop. The neuroanatomic distribution of TRH neurons in the human hypothalamus was reported only in the 1990s.

Kelly Cheer and Peter J. Trainer. Chapter 10. Evaluation of pituitary function. In Handbook of Clinical Neurology, Vol. 124 (3rd series). Clinical Neuroendocrinology.

This chapter aims to give a rational, reliable and strategic approach to pituitary investigation with understanding of the underlying physiology, thereby increasing confidence when seeing patients with pituitary dysfunction or reading about dynamic pituitary function tests in clinical letters.

Read Full Post »