Feeds:
Posts
Comments

Posts Tagged ‘membrane vesicles’


The transport of molecules across membranes

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Cellular Transport and the Nobel Prize for Medicine

Extracted  from October 8, 2013 | by

The 2013 Nobel Prize in Physiology or Medicine was  awarded to  to Randy W. Schekman, at the University of California at Berkeley; James E. Rothman,  at Yale University in New Haven, Connecticut; and Thomas C. Südhof,  at Stanford University, for their discoveries of machinery regulating vesicle traffic, a major transport system in cells.three U.S. scientists for their work on how the cell coordinates its transport system to shuttle proteins and other molecules from one location to another.

The organization and transport of molecules across cellular mmembranes is accomplished via vesicles that shuttle cargo between organelles or fuse to other structures to release their cargo outside the cell. The vesicle transport system is critical for a variety of physiological processes, ranging from signaling in the brainto release of hormones and immune cytokines.

Schekman identified three classes of genes that control different facets of the cell’s transport system.

Vesicle fusion

http://www.highlighthealth.com/wp-content/uploads/2013/10/vesicle-fusion.jpg

This was followed by James Rothman’s discovery that a protein complex enables vesicles to fuse with their target membranes (pictured in orange above). This lock and key mechanism ensures that the vesicle fuses at the right location and that cargo molecules are delivered to the correct destination.

Also in the 1990s, Thomas Südhof was studying how nerve cells communicate in the brain. Calcium ions were known to be involved in vesicle cargo release, and Südhof searched for calcium sensitive proteins in nerve cells. He identified the molecular machinery (pictured in purple above) that responds to an influx of calcium ions (Ca2+) and triggers vesicle fusion.

Extracellular vesicles are  participate in the pathogenesis of various diseases, most notably neurodegenerative disorders, and extracellular vesicles are likely to have therapeutic applications in large-molecule drug delivery.

References

  1. The Nobel Prize in Physiology or Medicine 2013 – Press Release. Nobelprize.org. 7 Oct 2013.
  2. Andaloussi et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery 2013 Vol: 12(5):347-357. DOI: 10.1038/nrd3978
    View abstract
  3. Anderson et al. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest. 2010 Nov;90(11):1549-57. DOI: 10.1038/labinvest.2010.152. Epub 2010 Aug 30.
    View abstract

 

Machinery Regulating Vesicle Traffic, A Major Transport System in our Cells

http://www.nobelprizemedicine.org/wp-content/uploads/2013/10/Scientific-Background-Zierath-and-Lindahl.pdf

Together, Rothman, Schekman and Südhof have transformed the way we view transport of molecular cargo to specific destinations inside and outside the cell. Their discoveries explain a long-standing enigma in cell biology and also shed new light on how disturbances in this machinery can have deleterious effects and contribute to conditions such as neurological diseases, diabetes, and immunological disorders.

Eukaryotic cells differ from prokaryotic cells by their more complex intracellular organization. In eukaryotes, specific cellular functions are compartmentalized into the cell nucleus and organelles surrounded by intracellular membranes. This compartmentalization vastly improves the efficiency of many cellular functions and prevents potentially dangerous molecules from roaming freely within the cell. But when distinct cellular processes are compartmentalized, a problem emerges. Different compartments need to exchange specific molecules (Figure 1). Furthermore, certain molecules need to be exported to the cell exterior. Most molecules are too large to directly pass through membranes, thus a mechanism that ensures specific delivery of this molecular cargo is required.

Figure 1: Each cell in the body has a complex organization where specific cellular functions are separated into different compartments called organelles. Molecules produced in the cell are packaged in vesicles and transported with special and temporal precision to the correct locations within and outside the cell.

Mysteries of cellular compartmentalization have long intrigued scientists. Improved light microscopy techniques aided in the understanding of intracellular organization in eukaryotic cells, but the advent of electron microscopy and new staining techniques, combined with subcellular fractionation assays using differential ultracentrifugation procedures, led to a deeper understanding of the cell’s inner life. Albert Claude, George Palade and Christian de Duve, who received the Nobel Prize in Physiology or Medicine 1974*, were pioneers in this area and have shed light on how the cell is organized and compartmentalized. Secretory proteins were shown to be produced on ribosomes in the endoplasmic reticulum (ER) and trafficked to the Golgi complex (named after the 1906 Nobel Laureate Camillo Golgi) (Figure 1). Progress was also made in deciphering how proteins find their appropriate destination. Günter Blobel was awarded the 1999 Nobel Prize in Physiology or Medicine* for his discoveries that proteins have intrinsic signals that govern their transport and localization in the cell. Yet, a lingering question remained. How are molecules, including hormones, transport proteins, and neurotransmitters, correctly routed to their appropriate destination? From the work of Palade, the traffic of secretory proteins from the ER was understood to be carried out using small membrane-surrounded vesicles that bud from one membrane and fuse with another, but how precision could be acquired in this process remained enigmatic.

The work of  Rothman, Schekman and Südhof represents a paradigm shift in our understanding of how the eukaryotic cell, with its complex internal compartmentalization, organizes the routing of molecules packaged in vesicles to various intracellular destinations, as well as to the outside of the cell. Specificity in the delivery of molecular cargo is essential for cell function and survival. This specificity is required for the release of neurotransmitters into the presynaptic region of a nerve cell to transmit a signal to a neighboring nerve cell. Likewise, specificity is required for the export of hormones such as insulin to the cell surface. While vesicles within the cell were long known to be critical components of this transportation scheme, the precise mechanism by which these vesicles found their correct destination and how they fused with organelles or the plasma membrane to deliver the cargo remained mysterious. The work of the three 2013 Laureates radically altered our understanding of this aspect of cell physiology. Randy W. Schekman used yeast genetics to identify a set of genes critical for vesicular trafficking. He showed that these genes were essential for life and could be classified into three categories regulating different aspects of vesicle transport. James E. Rothman embarked on a biochemical approach and identified proteins that form a functional complex controlling cell fusion. Proteins on the vesicle and target membrane sides bind in specific combinations, ensuring precise delivery of molecular cargo to the right destination. Thomas C. Südhof became interested in how vesicle fusion machinery was controlled. He unraveled the mechanism by which calcium ions trigger release of neurotransmitters, and identified key regulatory components in the vesicle fusion machinery.

Schekman discovered genes encoding proteins that are key regulators of vesicle traffic. Comparing normal with genetically mutated yeast cells in which vesicle traffic was disturbed, he identified genes that control transport to different compartments and to the cell surface

Rothman published a series of papers where he reconstituted the intracellular transport of the VSV-G protein within the Golgi complex. He then used the assay to study both vesicle budding and fusion, and purified proteins from the cytoplasm that were required for transport. The first protein to be purified was the Nethylmaleimide-sensitive factor (NSF). Rothman’s discovery of NSF paved the way for the subsequent identification of other proteins important for the control of vesicle fusion, and the next one in line was SNAP (soluble NSFattachment protein). SNAPs bind to membranes and assist in the recruitment of NSF.

One of the yeast mutants, sec18, corresponded to NSF, which also revealed that the vesicle fusion machinery was evolutionarily ancient. Furthermore, Rothman and Schekman collaboratively cloned sec17 and provided evidence of its functional equivalence to SNAP. Other sec genes were shown to correspond to genes encoding fusion proteins were identified by other methods.

Using the NSF and SNAP proteins as bait, Rothman next turned to brain tissue, from which he purified proteins that he later named SNAREs (soluble NSF-attachment protein receptors). Intriguingly, three SNARE proteins, VAMP/Synaptobrevin, SNAP-25 and syntaxin, were found in stoichiometric amounts, which suggested to Rothman that they functioned together in the vesicle and target membranes. The three proteins had previously been identified by several scientists, including Richard Scheller, Kimio Akagawa, Reinhard Jahn and Pietro de Camilli, and localized to the presynaptic region, but their function was largely unknown. VAMP/Synaptobrevin resided on the vesicle, whereas SNAP-25 and syntaxin were found at the plasma membrane. This prompted Rothman to propose a hypothesis – the SNARE hypothesis – which stipulated that target and vesicle SNAREs (t-SNAREs and v-SNAREs) were critical for vesicle fusion through a set of sequential steps of synaptic docking, activation and fusion.

Thomas C. Südhof originally trained at the Georg-August-Universität and the Max-Planck Institute for Biophysical Sciences in Göttingen, Germany, and was a postdoctoral fellow with Michael Brown and Joseph Goldstein (Nobel Prize 1985) at University of Texas Southwestern Medical School in Dallas. As a junior group leader, he set out to study how synaptic vesicle fusion was controlled. Rothman and Schekman had provided fundamental machinery for vesicle fusion, but how vesicle fusion was temporally controlled remained enigmatic. Vesicular fusions in the body need to be kept carefully in check, and in some cases vesicle fusion has to be executed with high precision in response to specific stimuli. This is the case for example for neurotransmitter release in the brain and for insulin secretion from the endocrine pancreas.

The neurophysiology field was electrified by the discoveries of Bernard Katz, Ulf von Euler and Julius Axelrod who received the Nobel Prize in Physiology or Medicine 1970* for their discoveries concerning the humoral transmittors in the nerve terminals and the mechanism for their storage, release and inactivation. Südhof was intrigued by the rapid exocytosis of synaptic vesicles, which is under tight temporal control and regulated by the changes in the cytoplasmic free calcium concentration. Südhof elucidated how calcium regulates neurotransmitter release in neurons and discovered that complexin and synaptotagmin are two critical proteins in calcium-mediated vesicle fusion.

Read Full Post »