Reporter: Aviva Lev-Ari, PhD, RN
By Kate Madden Yee, AuntMinnie.com staff writer
April 22, 2013 — If women being treated with tamoxifen for breast cancer see their breast density drop, they may have a 50% lower risk of dying from the disease, according to a new study by Swedish researchers published online April 22 in the Journal of Clinical Oncology.
![]() |
Shaping the future of breast imaging technology With a range of innovative breast imaging technologies: low-dose mammography, ultrasound, and MRI, all supported by leading-edge information management, Philips is setting new standards in breast care. Pick up lesions early, diagnose them quickly, enhance efficiency and productivity, and give patients physical comfort. Learn more. |
![]() |
In a study that hints at a role for breast density measurement in predicting therapy response, researchers at Karolinska Institutet in Stockholm found that women who had a relative reduction of more than 20% in the absolute dense area of their breast tissue during the course of tamoxifen treatment had a 50% reduction in breast cancer mortality over a span of 15 years, compared with women who had little or no change (JCO, April 22, 2013).
Tamoxifen is usually given over five years to prevent the recurrence of breast cancer in women who have completed their primary treatment. The researchers conducted the study to assess whether there was a link between reduced tissue density and the effectiveness of tamoxifen therapy.

No method has been available for assessing which women are likely to respond to tamoxifen and not relapse with breast cancer, according to Dr. Per Hall and colleagues.
“To the best of our knowledge, this is the first time mammographic density change has been used as a prognostic marker of response to tamoxifen,” Hall and colleagues wrote. “We observed that women treated with tamoxifen who experienced mammographic density reduction were associated with substantially better long-term breast-cancer-specific survival. If validated, mammographic density change has the potential to be an early marker for therapy response.”
For the study, Hall and colleagues included data collected in Sweden between 1993 and 1995 from 974 postmenopausal patients with breast cancer who had both baseline and follow-up mammograms. Of these, 474 patients received tamoxifen treatment and 500 did not. The team measured mammographic density using a statistical method that expressed the data as absolute dense area.
During the follow-up period, 121 patients (12.4%) died from breast cancer. But women who were treated with tamoxifen and who experienced a relative density reduction of more than 20% had a 50% lower risk of death, compared with women whose breast density didn’t change, the team found.
In the group that was not treated with tamoxifen, there was no statistically significant association between mammographic density change and survival, and the survival advantage was not found when absolute dense areas at baseline or follow-up were evaluated separately.
The findings come on the heels of a recommendation issued on April 15 from the U.S. Preventive Services Task Force (USPSTF) regarding the use of tamoxifen and a related drug, raloxifene, as preventive measures against breast cancer in asymptomatic women. The USPSTF suggests that women who are at increased risk for breast cancer talk to their physician about the potential benefits and harms of the drugs to prevent breast cancer; women who are not at increased risk should not use them.
If further research confirms the Swedish group’s findings, mammographic density change has the potential to be an early marker for therapy response, Hall and colleagues wrote. In fact, given ongoing developments in automatic algorithms for mammographic density measurement, using density change to monitor the effectiveness of treatment could be a cost-effective clinical tool.
“What’s needed is accurate measurement of mammographic density,” Hall said in a statement released by the Karolinska Institutet. “Measuring changes in density can be a simple and cheap means of assessing the effect of the treatment. If a patient is not responding to tamoxifen, maybe they should be given a different drug.”
ARRS: Breast US spots missed cancers in dense breasts, April 18, 2013
AHRA backs Are You Dense Advocacy, April 10, 2013
Calif. breast density bill goes into effect, April 1, 2013
Rads judge breast density the same for digital, analog mammo, February 28, 2013
Yearly screening breast US benefits women with dense tissue, December 4, 2012
Copyright © 2013 AuntMinnie.com
http://www.auntminnie.com/index.aspx?sec=sup&sub=wom&pag=dis&ItemID=103197&wf=5401
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.