Reporter: Aviva Lev-Ari, PhD, RN
Simulations Show Young Surgeons Face Special Concerns With Operating Room Distractions
Article Date: 03 Dec 2012 – 1:00 PST
A study has found that young, less-experienced surgeons made major surgical mistakes almost half the time during a “simulated” gall bladder removal when they were distracted by noises, questions, conversation or other commotion in the operating room.
In this analysis, eight out of 18, or 44 percent of surgical residents made serious errors, particularly when they were being tested in the afternoon. By comparison, only one surgeon made a mistake when there were no distractions.
Exercises such as this in what scientists call “human factors engineering” show not just that humans are fallible – we already know that – but work to identify why they make mistakes, what approaches or systems can contribute to the errors, and hopefully find ways to improve performance.
The analysis is especially important when the major mistake can be fatal.
This study, published in Archives of Surgery, was done by researchers from Oregon State University and the Oregon Health and Science University, in the first collaboration between their respective industrial engineering and general surgery faculty.
“This research clearly shows that at least with younger surgeons, distractions in the operating room can hurt you,” said Robin Feuerbacher, an assistant professor in Energy Systems Engineering at OSU-Cascades and lead author on the study. “The problem appears significant, but it may be that we can develop better ways to address the concern and help train surgeons how to deal with distractions.”
The findings do not necessarily apply to older surgeons, Feuerbacher said, and human factors research suggests that more experienced people can better perform tasks despite interruptions. But if surgery is similar to other fields of human performance, he said, older and more experienced surgeons are probably not immune to distractions and interruptions, especially under conditions of high workload or fatigue. Some of those issues will be analyzed in continued research, he said.
This study was done with second-, third- and research-year surgical residents, who are still working to perfect their surgical skills. Months were spent observing real operating room conditions so that the nature of interruptions would be realistic, although in this study the distractions were a little more frequent than usually found.
Based on these real-life scenarios, the researchers used a virtual reality simulator of a laparoscopic cholecystectomy – removing a gall bladder with minimally invasive instruments and techniques. It’s not easy, and takes significant skill and concentration.
While the young surgeons, ages 27 to 35, were trying to perform this delicate task, a cell phone would ring, followed later by a metal tray clanging to the floor. Questions would be posed about problems developing with a previous surgical patient – a necessary conversation – and someone off to the side would decide this was a great time to talk about politics, a not-so-necessary, but fairly realistic distraction.
When all this happened, the results weren’t good. Major errors, defined as things like damage to internal organs, ducts and arteries, some of which could lead to fatality, happened with regularity.
Interrupting questions caused the most problems, followed by sidebar conversations. And for some reason, participants facing disruptions did much worse in the afternoons, even though conventional fatigue did not appear to be an issue.
“We’ve presented these findings at a surgical conference and many experienced surgeons didn’t seem too surprised by the results,” Feuerbacher said. “It appears working through interruptions is something you learn how to deal with, and in the beginning you might not deal with them very well.”
SOURCE:
http://www.medicalnewstoday.com/releases/253456.php
Events that should never occur in surgery (“never events“) happen at least 4,000 times a year in the U.S. according to research from Johns Hopkins University.
The findings, published in Surgery, is the first of its kind to reveal the true extent of the prevalence of “never events” in hospitals through analysis of national malpractice claims. They observed that over 80,000 “never events” occurred between 1990 and 2010.
They estimate that at least 39 times a week a surgeon leaves foreign objects inside their patients, which includes stuff like towels or sponges. In addition surgeons performing the wrong surgery or operating on the wrong body part occurs around 20 times a week.
Marty Makary, M.D., M.P.H., an associate professor of surgery at the Johns Hopkins University School of Medicine, said:
“There are mistakes in health care that are not preventable. Infection rates will likely never get down to zero even if everyone does everything right, for example. But the events we’ve estimated are totally preventable. This study highlights that we are nowhere near where we should be and there’s a lot of work to be done.”
The researchers believe that this finding could help ensure that better systems are developed to prevent these “never events” which should never happen.
The study examined data from the National Practitioner Data Bank which handles medical malpractice claims to calculate the total number of wrong-site-, wrong-patient and wrong-procedure surgeries.
Over 20 years. they found more than 9,744 paid malpractice claims which cost over $1.3 billion. Of whom 6.6% died, while 32.9% were permanently injured and 59.2% were temporarily injured.
Around 4,044 never events occur annually in the U.S., according to estimates made by the research team who analyzed the rates of malpractice claims due to adverse surgical events.
Many safety procedures have been implemented in medical centers to avoid never events, such as timeouts in the operating rooms to check if surgical plans match what the patient wants. In addition to this, an effective way of avoiding surgeries that are performed on the wrong body part is using ink to mark the site of the surgery. In order to prevent human error, Makary notes that electronic bar codes should be implemented to count sponges, towels and other surgical instruments before and after surgery.
It is a requirement that all hospitals report the number of judgments or claims to the NPDB. Makary did note, however, that these figures could be low because sometimes items left behind after surgery are never discovered.
Most of these events occurred among patients in their late 40s, surgeons of the same age group accounted for more than one third of the cases. More than half (62%) of the surgeons responsible for never events were found to be involved in more than one incident.
Makary comments the importance of reporting never events to the public. He stresses that by doing so, patients will have more information about where to go for surgery as well as putting pressure on hospitals to maintain their quality of care. Hospitals should report any never events to the Join Commission, however this is often overlooked and more enforcement is necessary.
Written by Joseph Nordqvist
Copyright: Medical News Today
SOURCE:
http://www.medicalnewstoday.com/articles/254426.php
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.