New Risk Stratification for Breast Cancer
Larry H. Bernstein, MD, FCAP, Curator
LPBI
Updated 01/26/2021
Invasive Lobular Breast Cancer May Have Worse Prognosis than Ductal Cancer
— Analysis highlights need for further research, says Megan Kruse, MD
Source: https://www.medpagetoday.com/meetingcoverage/sabcsvideopearls/90531
An analysis of the largest recorded cohort of patients with invasive lobular breast cancer (ILBC) demonstrates that outcomes are significantly worse when compared with invasive ductal breast cancer, highlighting a significant need for more research and clinical trials on patients with ILBC. The findings were presented at the virtual 2020 San Antonio Breast Cancer Symposium.
In this exclusive MedPage Today video, Megan Kruse, MD, of the Cleveland Clinic, explains the multi-institutional study and the insights in provides for future prognostic research.
MD Anderson Researchers Develop New Breast Cancer Staging System
https://www.genomeweb.com/cancer/md-anderson-researchers-develop-new-breast-cancer-staging-system
NEW YORK (GenomeWeb) – Researchers at the University of Texas MD Anderson Cancer Center have developed a new breast cancer staging system that incorporates tumor biology as a critical prognostic indicator for women who undergo neoadjuvant therapy.
Published this week in JAMA Oncology, the Neo-Bioscore staging system incorporates HER2/ERBB2 status, which allows for more precise prognostic stratification of all breast cancer subtypes.
To date, breast cancer patient staging involved considering the size of the primary tumor, metastasis, or disease in the lymph nodes at the time of presentation as the primary factors.However, this fails to take into account the biology of the tumor, which has shown to be critically important, Elizabeth Mittendorf, associate professor of Breast Surgical Oncology at MD Anderson and corresponding author on the study, said in a statement.
The new system builds on the development of an earlier breast cancer staging system developed by MD Anderson, CPS+EG, that incorporates preclinical stage, estrogen receptor status, grade, and post-treatment pathologic stage. While it was an improvement from previous methods, it is no longer a sufficient staging system because it predates the routine use of trastuzumab in the neoadjuvant setting and therefore had a limited ability to provide prognostic information for HER2/ERBB2-positive patients, Mittendorf said.
To develop the staging system, the researchers conducted a retrospective study that evaluated 2,377 MD Anderson breast cancer patients who all had non-metastatic invasive breast cancer and were treated with neoadjuvant chemotherapy.
Each patient’s clinicopathologic data were recorded, including age, clinical and pathological stage, ER status, HER2/ERBB2 status, and nuclear grade. Patients’ ER status was recorded as a percentage of cells staining positive under immunohistochemical analysis. Their ERBB2 status was defined as positive at a reading of 3+ on immunohistochemical analysis or when gene amplification was shown on fluorescence in situ hybridization.
All patients received an anthracycline and/or taxane-based neoadjuvant chemotherapy regimen. Patients with HER2/ERBB2-positive disease routinely completed one year of trastuzumab therapy. After completing chemotherapy, patients underwent either breast-conserving therapy or mastectomy with axillary evaluation with or without post-mastectomy irradiation.
Patients’ CPS+EG score was determined according to the previously published staging system and was calculated twice (once using 1 percent or higher as the cutoff for ER positivity and again using 10 percent or higher as the cutoff).
Their disease-specific survival (DSS) was also calculated using multiple staging systems: AJCC clinical stage, AJCC pathologic stage, CPS+EG (1 percent cutoff), and CPS+EG (10 percent cutoff). Within each staging system, DSS among subgroups was compared using the log-rank test.
After the researchers determined a CPS+EG score for each patient, they added the patient’s respective HER2/ERBB2 status to the model. They then constructed the novel staging system by adding a point to the CPS+EG score for HER2-negative tumors. In the study cohort, 591 patients were HER2/ERBB2 positive.
The researchers found that in addition to validating previous findings that CPS+EG score improved prognostication of patients, the Neo-Bioscore created a more refined stratification in approximately 75 percent of the study cohort. This shift reflects the number of HER2/ERBB2-negative tumors in the study and demonstrated that adding HER2/ERBB2 standards created a highly significant improvement.
“With this tool, I can give my patients the precise information they are looking for: a more refined prognosis. Also, with this data, we will know which patients are in greatest need of additional therapy,” Mittendorf said. “Hopefully these findings will result in more informed conversations between doctor and patient.”
The Neo-Bioscore Update for Staging Breast Cancer Treated With Neoadjuvant ChemotherapyIncorporation of Prognostic Biologic Factors Into Staging After Treatment
JAMA Oncol. Published online March 17, 2016. http://dx.doi.org:/10.1001/jamaoncol.2015.6478
Transforming Breast Cancer Treatment
Landmark preclinical study cured lung metastases in 50 percent of breast cancers by making nanoparticles inside the tumor.
http://www.technologynetworks.com/news.aspx?ID=189462
A team of investigators from Houston Methodist Research Institute may have transformed the treatment of metastatic triple negative breast cancer by creating the first drug to successfully eliminate lung metastases in mice.
The majority of cancer deaths are due to metastases to the lung and liver, yet there is no cure. Existing cancer drugs provide limited benefit due to their inability to overcome biological barriers in the body and reach the cancer cells in sufficient concentrations. Houston Methodist nanotechnology and cancer researchers have solved this problem by developing a drug that generates nanoparticles inside the lung metastases in mice.
In this study, 50 percent of the mice treated with the drug had no trace of metastatic disease after eight months. That’s equivalent to about 24 years of long-term survival following metastatic disease for humans.
Due to the body’s own defense mechanisms, most cancer drugs are absorbed into healthy tissue causing negative side effects, and only a fraction of the administered drug actually reaches the tumor, making it less effective, said Mauro Ferrari, Ph.D, president and CEO of the Houston Methodist Research Institute. This new treatment strategy enables sequential passage of the biological barriers to transport the killing agent into the heart of the cancer. The active drug is only released inside the nucleus of the metastatic disease cell, avoiding the multidrug resistance mechanism of the cancer cells. This strategy effectively kills the tumor and provides significant therapeutic benefit in all mice, including long-term survival in half of the animals.
This finding comes 20 years after Ferrari started his work in nanomedicine. Ferrari and Haifa Shen, M.D., Ph.D., are co-senior authors on the paper, which describes the action of the injectable nanoparticle generator (iNPG), and how a complex method of transporting a nano-version of a standard chemotherapy drug led to never before seen results in mice models with triple negative breast cancer that had metastasized to the lungs.
“This may sound like science fiction, like we’ve penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and releases the drug particles at the site of the cellular nucleus. With this injectable nanoparticle generator, we were able to do what standard chemotherapy drugs, vaccines, radiation, and other nanoparticles have all failed to do,” said Ferrari.
Houston Methodist has developed good manufacturing practices (GMP) for this drug and plans to fast-track the research to obtain FDA-approval and begin safety and efficacy studies in humans in 2017.
“I would never want to overpromise to the thousands of cancer patients looking for a cure, but the data is astounding,” said Ferrari, senior associate dean and professor of medicine, Weill Cornell Medicine. “We’re talking about changing the landscape of curing metastatic disease, so it’s no longer a death sentence.”
The Houston Methodist team used doxorubicin, a cancer therapeutic that has been used for decades but has adverse side effects to the heart and is not an effective treatment against metastatic disease. In this study, doxorubicin was packaged within the injectable nanoparticle generator that is made up of many components.
Shen, a senior member of the department of nanomedicine at Houston Methodist Research Institute, explains that each component has a specific and essential role in the drug delivery process. The first component is the nanoporous silicon material that naturally degrades in the body. The second component is a polymer made up of multiple strands that contain doxorubicin. Once inside the tumor, the silicon material degrades, releasing the strands. Due to natural thermodynamic forces, these strands curl-up to form nanoparticles that are taken up by the cancer cells. Once inside the cancer cells, the acidic pH close to the nucleus causes the drug to be released from the nanoparticles. Inside the nucleus, the active drug acts to kill the cell.
“If this research bears out in humans and we see even a fraction of this survival time, we are still talking about dramatically extending life for many years. That’s essentially providing a cure in a patient population that is now being told there is none,” said Ferrari, who holds the Ernest Cockrell Jr. Presidential Distinguished Chair and is considered one of the founders of nanomedicine and oncophysics (physics of mass transport within a cancer lesion).
The Houston Methodist team is hopeful that this new drug could help cancer physicians cure lung metastases from other origins, and possibly primary lung cancers as well.