Feeds:
Posts
Comments

Posts Tagged ‘Materials’


The Future of Synthetic Biology

Reporter: Irina Robu, PhD

With an estimated global evaluation of around $14 billion US, synthetic biology is a rapidly accelerating market. Nonetheless while the growth of the market has been remarkable, the ttrue impact has not yet been seen. The era of AI will quickly increase the pace of discovery, and produce materials not seen in nature, through extrapolation and generative design. The extraordinary is now possible: producing spider silk without spiders, egg proteins without chickens and fragrances without flowers.

Synthetic biology companies are associating with fashion designers as well as forming ‘organism foundries. Rapidly, AI will utilize its learning of the natural world to make guided inferences which produce entirely new materials. From a technology perspective, we’re experiencing an explosion of capability that will be invasive in the next 3-5 years. Language models have come a long way, to the point where full models are being kept private so as not to endanger the public.

Already today, the average person has the ability to start their own commercial space venture for less than the cost of a juice franchise. PwC Australia’s Charmaine Green believes secret trends can hide among obvious ones. She outlines three trends leading to her hypothesis that Australia is well placed to become the global creative hub for video game development.

Economies like Australia are situated to capitalize on this trend, and video game development can become a permanent and substantial part of the economy. In Australia, Green argues, we have all the basic elements needed: high ingenuity, creative risk taking, and the freedom and flexibility that comes with the country’s small-to-mid studios.

SOURCE

Tech trends that will change the world by 2025

Read Full Post »


Unlocking the Secrets of 3D Printing

Reporter: Irina Robu, PhD

Researchers at Lawrence Livermore National Laboratory discovered interesting ways to advance the capabilities of two-photon lithography, a high-resolution 3D printing technique capable of producing nanoscale features which unleashes the potential for X-ray computed tomography to analyze stress or defects noninvasively in embedded in 3D printed medical devices or implants. Two-photon lithography stereotypically requires a thin glass slide, a lens and an immersion oil to help the laser light focus to a fine point where curing and printing occurs. The findings were published in the journal of ACS Applied Material and Interfaces.

In the paper, researchers describe cracking the code on resist materials improved for two-photon lithography and forming 3-D microstructures with features less than 150 nanometer which is better in comparison to previous techniques which build structures from ground up, limiting the height of the objects.

According to LLNL researcher James Oakdale, “In this paper, we have unlocked the secrets to making custom materials on two-photon lithography systems without losing resolution”, because the laser light refracts as it passes through the photoresist material, the cornerstone is discovering how to match the refractive index of the resist material to the immersion medium of the lens so the laser could pass through unimpeded.

Investigators can now use X-ray computed tomography as an analytical tool to copy the inside parts without cutting them open and to investigate 3D printed objects by fine-tuning the material’s x-ray absorption. The only limiting factor is the time it takes to build, so the researchers are investigating how to speed up the process.

These techniques could be used to harvest and probe the internal structure of targets for the National Ignition Facility, as well as optical and mechanical metamaterials and 3D-printed electrochemical batteries.

SOURCE

https://www.llnl.gov/news/lab-unlocks-secrets-nanoscale-3d-printing

 

Read Full Post »