Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Brain folds’


3D Printing Confirms Physical Model of Brain Folds

Reported by: Irina Robu, PhD

Highly folded brains are not present in most animals but only in some primates, dolphins, elephants and pigs. However, not a lot is understood of how the brain folds. Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences collaborating with scientists in Finland and France have shown that while many molecular processes are important in determining cellular events,what ultimately causes the brain to fold in a simple mechanical instability associated with buckling.  Understanding how the brain folds is important because it can unlock the inner workings of the brain and unravel brain-related disorders.

The number, size, shape and position of neuronal cells during brain growth all lead to the expansion of the gray matter,relative to the underlying white matter. This puts the cortex under compression, leading to a mechanical instability that causes it to crease locally. Growth differential between the brain’s outer cortex and the soft tissue underneath explains the variations in the folding patterns, the relative size of the brain, and the relative expansion of the cortex.

A gel model of a fetal brain after being immersed in liquid solvent. The resulting compression led to the formation of folds similar in size and shape to real brains. Credit: Mahadevan Lab/Harvard SEAS Read more at: http://phys.org/news/2016-02-d-physical-brain.html#jCp

A gel model of a fetal brain after being immersed in liquid solvent. The resulting compression led to the formation of folds similar in size and shape to real brains. Credit: Mahadevan Lab/Harvard SEAS

Based on this, the team collaborated with neuroanatomists and radiologists in France and tested the theory using data from human fetuses. The team made a three-dimensional, gel model of a smooth fetal brain based on MRI images. The model’s surface was coated with a thin layer of elastomer gel, as an analog of the cortex. To mimic cortical expansion, the gel brain was immersed in a solvent that is absorbed by the outer layer causing it to swell relative to the deeper regions. Within minutes of being immersed in liquid solvent, the resulting compression led to the formation of folds similar in size and shape to real brains.
The research shows that if part of the brain does not grow properly or the geometry is disrupted,  the major folds are not in the right place causing a dysfunction in the brain.
Source
Advertisements

Read Full Post »