Feeds:
Posts
Comments

Posts Tagged ‘3-D models’

The Scientist Who Is Making 3D Printing More Human

Curator: Larry H. Bernstein, MD, FCAP

 

 

 

The Scientist Who Is Making 3D Printing More Human Madeline Gannon Wants To Unlock The Designer In All Of Us

Popular Science http://www.popsci.com/scientist-who-is-making-3d-printing-more-human

Madeline Gannon is a researcher, teacher at the Carnegie Mellon University School of Architecture and Ph.D. candidate in Computational Design — but that’s not all. She is on a mission to open up the infinite design possibilities of 3D printing to the world.

“Currently you have to have a lot of technical background in order to participate in creating things for 3D printers,” Gannon says. “There is still a huge knowledge barrier for how we create digital models.”

As the technology has advanced, prices have plummeted, and now anyone can buy a 3D printer for a few hundred dollars, Gannon notes. However, not just anyone can create original designs for 3D-printed artifacts.

To put true creative power into the hands of any ordinary 3D printer owner, Gannon has developed an innovative new system called “Tactum.”

DESIGN WITHIN REACH

Tactum is a new type of software that lets users create their own unique designs for 3D printers by simply touching a projected image.

Using their innate hand gestures, someone using Tactum can poke, rub and otherwise manipulate the projected image that will become their 3D printed object, and see it instantly change shape in response.

In keeping with the goal of democratizing the process, Gannon designed her first series of Tactum artifacts on a surface that everyone can access freely and manipulate instinctively, that being the human body.

“My goal was to bring the digital out to the physical world and out onto your body,” says Gannon.

Along with a companion project called Reverb — which translates these user-created designs into printable meshes — that impulse has resulted in a spectacular diversity of bracelet and necklace designs, ranging from smooth landscapes, intricate textures and chaotic free forms to delicate geometries derived from the 19th century art of chronography.

CRAFTING THE FUTURE

Fashion is only the beginning. The real fireworks start when Tactum is deployed for function.

Again turning to the familiar, Gannon’s first functional artifact was a custom watchband for a Motorola Moto 360 smartwatch.

One of her future goals is to use Tactum for customizing prosthetics and other wearable medical devices.

Gannon envisions doctor and patient collaborating with a Tactum technician in real time, with the patient providing instant feedback on the fit and feel of the device.

Madlab.cc

Since Tactum can potentially produce 3D-printed objects more quickly, at lower cost, doctor and patient could continually adjust a prosthetic limb as needed, while enabling a high degree of personal expression.

Tactum also has potential in the classroom, and the system reflects Gannon’s insistence on teaching tools that help learners dive right into the creative process.

“I want them to be intuitive. I want them to be easy to understand. I want to hide complexity and show abstraction,” Gannon says.

Later this year, she will be an artist-in-residence at the leading 3D software design company Autodesk Research, a collaborative supporter and the funder behind Tactum.

Gannon expects her stay at Autodesk to be “like a kid in a candy shop,” with access to every imaginable CNC fabrication device — a machine commonly used by machinists and craftspeople to create moldings and other architectural elements.

She plans to work with researchers there on applying Tactum to prosthetic devices, and to create new skin-based artifacts including, perhaps, a “full body thing.”

Based on Gannon’s work so far, the Autodesk experience is bound to result in the unique, the spectacular, and the breaking of even more barriers.

THE MAKING OF A MAKER

Gannon’s focus on opening up access to knowledge is rooted in her memories of visiting museums as a high school student.

The museum trips also inspired Gannon to pursue an academic path that eventually lead her to 3D printing and the collaborative work of her design collective, MADLAB.CC.

“In high school I went to museums, and I noticed myself admiring the building more than the exhibits,” she says. “That gave me a hint that architecture was something I wanted to get into.”

Madlab.cc

Gannon progressed all the way through to the last year of architecture school before she had an epiphany, brought on by an encounter with a CNC router. Gannon found the experience of getting instant, physical results for her designs to be “intoxicating.”

There was just one problem. Gannon soon encountered the limit of the human-computer interface, and she found herself unable to transform her thoughts into action.

“I wanted to do some weird things with it…I wanted to learn how to talk to this machine so I could do more interesting things with it,” she says.

That desire drove Gannon to immerse herself in computer science, and now she finds herself at the leading edge of the “awkward space between computer science and the design realm,” exploring the future of digital making.

Gannon sees that future as an exciting, accessible one, where “everyone is an amateur, everyone is a beginner,” and people share their knowledge in a community of creators.

“The world needs more materials scientists!” she exclaims.

 

Read Full Post »

What is 3-D Printing

Curator: Larry H. Bernstein, MD, FCAP

 

 

3D printing or additive manufacturing is a process of making three dimensional solid objects from a digital file. The creation of a 3D printed object is achieved using additive processes. In an additive process an object is created by laying down successive layers of material until the entire object is created. Each of these layers can be seen as a thinly sliced horizontal cross-section of the eventual object.

How does 3D printing work?

It all starts with making a virtual design of the object you want to create. This virtual design is made in a CAD (Computer Aided Design) file using a 3D modeling program (for the creation of a totally new object) or with the use of a 3D scanner (to copy an existing object). A 3D scanner makes a 3D digital copy of an object.

3d scanners use different technologies to generate a 3d model such as time-of-flight, structured / modulated light, volumetric scanning and many more.

Recently, many IT companies like Microsoft and Google enabled their hardware to perform 3d scanning, a great example is Microsoft’s Kinect. This is a clear sign that future hand-held devices like smartphones will have integrated 3d scanners. Digitizing real objects into 3d models will become as easy as taking a picture. Prices of 3d scanners range from very expensive professional industrial devices to 30 USD DIY devices anyone can make at home.

Below you’ll find a short demonstration of the process of 3D scanning with a professional HDI 3D scanner that uses structured light:

To prepare a digital file for printing, the 3D modeling software “slices” the final model into hundreds or thousands of horizontal layers. When the sliced file is uploaded in a 3D printer, the object can be created layer by layer. The 3D printer reads every slice (or 2D image) and creates the object, blending each layer with hardly any visible sign of the layers, with as a result the three dimensional object.

Processes and technologies

Not all 3D printers use the same technology. There are several ways to print and all those available are additive, differing mainly in the way layers are build to create the final object.
Some methods use melting or softening material to produce the layers. Selective laser sintering (SLS) and fused deposition modeling (FDM) are the most common technologies using this way of printing. Another method of printing is when we talk about curing a photo-reactive resin with a UV laser or another similar power source one layer at a time. The most common technology using this method is called stereolithography (SLA).

To be more precise: since 2010, the American Society for Testing and Materials (ASTM) group “ASTM F42 – Additive Manufacturing”, developed a set of standards that classify the Additive Manufacturing processes into 7 categories  according to Standard Terminology for Additive Manufacturing Technologies. These seven processes are:

  1. Vat Photopolymerisation
  2. Material Jetting
  3. Binder Jetting
  4. Material Extrusion
  5. Powder Bed Fusion
  6. Sheet Lamination
  7. Directed Energy Deposition

Below you’ll find a short explanation of all of seven processes for 3d printing:

Vat Photopolymerisation

A 3D printer based on the Vat Photopolymerisation method has a container filled with photopolymer resin which is then hardened with UV light source.

Vat photopolymerisation schematics. Image source: lboro.ac.uk

The most commonly used technology in this processes is Stereolithography (SLA). This technology employs a vat of liquid ultraviolet curable photopolymer resin and an ultraviolet laser to build the object’s layers one at a time. For each layer, the laser beam traces a cross-section of the part pattern on the surface of the liquid resin. Exposure to the ultraviolet laser light cures and solidifies the pattern traced on the resin and joins it to the layer below.

After the pattern has been traced, the SLA’s elevator platform descends by a distance equal to the thickness of a single layer, typically 0.05 mm to 0.15 mm (0.002″ to 0.006″). Then, a resin-filled blade sweeps across the cross section of the part, re-coating it with fresh material. On this new liquid surface, the subsequent layer pattern is traced, joining the previous layer. The complete three dimensional object is formed by this project. Stereolithography requires the use of supporting structures which serve to attach the part to the elevator platform and to hold the object because it floats in the basin filled with liquid  resin. These are removed manually after the object is finished.

This technique was invented in 1986 by Charles Hull, who also at the time founded the company, 3D Systems.

Animation of the SLA process

Other technologies using Vat Photopolymerisation are the new ultrafast Continuous Liquid Interface Productionor CLIP and marginally used older Film Transfer Imaging and Solid Ground Curing.

Material Jetting

In this process, material is applied in droplets through a small diameter nozzle, similar to the way a common inkjet paper printer works, but it is applied layer-by-layer to a build platform making a 3D object and then hardened by UV light.

Material Jetting schematics. Image source: CustomPartNet

Here you can see presentation of Stratasys’ Objet500 Connex 3D printers that use their proprietary Triple-Jetting technology where you can clearly see the printheads and UV light:

Binder Jetting

With binder jetting two materials are used: powder base material and a liquid binder. In the build chamber, powder is spread in equal layers and binder is applied through jet nozzles that “glue” the powder particles in the shape of a programmed 3D object. The finished object is “glued together” by binder remains in the container with the powder base material. After the print is finished, the remaining powder is cleaned off and used for 3D printing the next object. This technology was first developed at the Massachusetts Institute of Technology in 1993 and in 1995 Z Corporation obtained an exclusive license.

Binder jetting 3D printing technology overview. Image source: additively.com

The following video shows a high-end binder jetting based 3D printer, the ExOne M-Flex.  This 3D printer uses metal powder and curing after the binding material is applied.

Material Extrusion

The most commonly used technology in this process is Fused deposition modeling (FDM)

Fused deposition modelling (FDM), a method of rapid prototyping: 1 – nozzle ejecting molten material (plastic), 2 – deposited material (modelled part), 3 – controlled movable table. Image source: Wikipedia, made by user Zureks under CC Attribution-Share Alike 4.0 International license.

The FDM technology works using a plastic filament or metal wire which is unwound from a coil and supplying material to an extrusion nozzle which can turn the flow on and off. The nozzle is heated to melt the material and can be moved in both horizontal and vertical directions by a numerically controlled mechanism, directly controlled by a computer-aided manufacturing (CAM) software package. The object is produced by extruding melted material to form layers as the material hardens immediately after extrusion from the nozzle. This technology is most widely used with two plastic filament material types: ABS (Acrylonitrile Butadiene Styrene) and PLA (Polylactic acid) but many other materials are available ranging in properties from wood filed, conductive, flexible etc.

FDM was invented by Scott Crump in the late 80’s. After patenting this technology he started the company Stratasysin 1988. The software that comes with this technology automatically generates support structures if required. The machine dispenses two materials, one for the model and one for a disposable support structure.

The term fused deposition modeling and its abbreviation to FDM are trademarked by Stratasys Inc. The exactly equivalent term, fused filament fabrication (FFF), was coined by the members of the RepRap project to give a phrase that would be legally unconstrained in its use.

Animation of the FDM process

Powder Bed Fusion

The most commonly used technology in this processes is Selective laser sintering (SLS)

SLS system schematic. Image source: Wikipedia from user Materialgeeza under Creative Commons Attribution-Share Alike 3.0 Unported license

This technology uses a high power laser to fuse small particles of plastic, metal, ceramic or glass powders into a mass that has the desired three dimensional shape. The laser selectively fuses the powdered material by scanning the cross-sections (or layers) generated by the 3D modeling program on the surface of a powder bed. After each cross-section is scanned, the powder bed is lowered by one layer thickness. Then a new layer of material is applied on top and the process is repeated until the object is completed.

All untouched powder remains as it is and becomes a support structure for the object. Therefore there is no need for any support structure which is an advantage over SLS and SLA. All unused powder can be used for the next print. SLS was developed and patented by Dr. Carl Deckard at the University of Texas in the mid-1980s, under sponsorship of DARPA.

Animation of the SLS process

Sheet Lamination

Sheet lamination involves material in sheets which is bound together with external force. Sheets can be metal, paper or a form of polymer. Metal sheets are welded together by ultrasonic welding in layers and then CNC milled into a proper shape. Paper sheets can be used also, but they are glued by adhesive glue and cut in shape by precise blades. A leading company in this field is Mcor Technologies.

Simplified model of ultrasonic sheet metal 3D printing. Image source: Wikipedia from user Mmrjf3 shared under Creative Commons Attribution 3.0 Unported license.

Here is a video with a metal sheet 3D printer by Fabrisonic that uses additive manufacturing paired with CNC milling:

… and here is an overview of Mcor 3D printers that use standard A4 paper sheets:

Directed Energy Deposition

This process is mostly used in the high-tech metal industry and in rapid manufacturing applications. The 3D printing apparatus is usually attached to a multi-axis robotic arm and consists of a nozzle that deposits metal powder or wire on a surface and an energy source (laser, electron beam or plasma arc) that melts it, forming a solid object.

Direct Energy Deposition with metal powder and laser melting. Image source: Merlin project

Sciaky is a major tech company in this area and here is their video presentation showing electron beam additive manufacturing:

 

http://i.ytimg.com/vi/5s0J-7W4i6s/hqdefault.jpg

http://i.ytimg.com/vi/Xff4eIYXDvI/hqdefault.jpg

 

Examples & applications of 3D printing

http://i.ytimg.com/vi/A10XEZvkgbY/hqdefault.jpg

http://3dprinting.com/wp-content/uploads/2012/06/3dprinting-Infographic.jpg

 

Applications include rapid prototyping, architectural scale models & maquettes, healthcare (3d printed prosthetics and printing with human tissue) and entertainment (e.g. film props).

Other examples of 3D printing would include reconstructing fossils in paleontology, replicating ancient artifacts in archaeology, reconstructing bones and body parts in forensic pathology and reconstructing heavily damaged evidence acquired from crime scene investigations.

3D printing industry

The worldwide 3D printing industry is expected to grow from $3.07B in revenue in 2013 to $12.8B by 2018, and exceed $21B in worldwide revenue by 2020. As it evolves, 3D printing technology is destined to transform almost every major industry and change the way we live, work, and play in the future.
Source: Wohlers Report 2015

Medical industry

The outlook for medical use of 3D printing is evolving at an extremely rapid pace as specialists are beginning to utilize 3D printing in more advanced ways. Patients around the world are experiencing improved quality of care through 3D printed implants and prosthetics never before seen.

Bio-printing

As of the early two-thousands 3D printing technology has been studied by biotech firms and academia for possible use in tissue engineering applications where organs and body parts are built using inkjet techniques. Layers of living cells are deposited onto a gel medium and slowly built up to form three dimensional structures. We refer to this field of research with the term: bio-printing.

Aerospace & aviation industries

The growth in utilisation of 3D printing in the aerospace and aviation industries can, for a large part, be derived from the developments in the metal additive manufacturing sector.
NASA for instance prints combustion chamber liners using selective laser melting and as of march 2015 the FAA cleared GE Aviation’s first 3D printed jet engine part to fly: a laser sintered housing for a compressor inlet temperature sensor.

Automotive industry

Although the automotive industry was among the earliest adopters of 3D printing it has for decades relegated 3d printing technology to low volume prototyping applications.
Nowadays the use of 3D printing in automotive is evolving from relatively simple concept models for fit and finish checks and design verification, to functional parts that are used in test vehicles, engines, and platforms. The expectations are that 3D printing in the automotive industry will generate a combined $1.1 billion dollars by 2019.

Industrial printing

In the last couple of years the term 3D printing has become more known and the technology has reached a broader public. Still, most people haven’t even heard of the term while the technology has been in use for decades. Especially manufacturers have long used these printers in their design process to create prototypes for traditional manufacturing and research purposes. Using 3D printers for these purposes is called rapid prototyping.

Why use 3D printers in this process you might ask yourself. Now, fast 3D printers can be bought for tens of thousands of dollars and end up saving the companies many times that amount of money in the prototyping process. For example, Nike uses 3D printers to create multi-colored prototypes of shoes. They used to spend thousands of dollars on a prototype and wait weeks for it. Now, the cost is only in the hundreds of dollars, and changes can be made instantly on the computer and the prototype reprinted on the same day.

Besides rapid prototyping, 3D printing is also used for rapid manufacturing. Rapid manufacturing is a new method of manufacturing where companies are using 3D printers for short run custom manufacturing. In this way of manufacturing the printed objects are not prototypes but the actual end user product. Here you can expect more availability of personally customized products.

Personal printing

Personal 3D printing or domestic 3D printing is mainly for hobbyists and enthusiasts and really started growing in 2011. Because of rapid development within this new market printers are getting cheaper and cheaper, with prices typically in the range of $250 – $2,500. This puts 3D printers into more and more hands.

The RepRap open source project really ignited this hobbyist market. For about a thousand dollars people could buy the RepRap kit and assemble their own desktop 3D printer. Everybody working on the RepRap shares their knowledge so other people can use it and improve it again.

History

In the history of manufacturing, subtractive methods have often come first. The province of machining (generating exact shapes with high precision) was generally a subtractive affair, from filing and turning through milling and grinding.

Additive manufacturing’s earliest applications have been on the toolroom end of the manufacturing spectrum. For example, rapid prototyping was one of the earliest additive variants and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices, which was earlier only done with subtractive toolroom methods (typically slowly and expensively). However, as the years go by and technology continually advances, additive methods are moving ever further into the production end of manufacturing. Parts that formerly were the sole province of subtractive methods can now in some cases be made more profitably via additive ones.

However, the real integration of the newer additive technologies into commercial production is essentially a matter of complementing subtractive methods rather than displacing them entirely. Predictions for the future of commercial manufacturing, starting from today’s already- begun infancy period, are that manufacturing firms will need to be flexible, ever-improving users of all available technologies in order to remain competitive.

Future

It is predicted by some additive manufacturing advocates that this technological development will change the nature of commerce, because end users will be able to do much of their own manufacturing rather than engaging in trade to buy products from other people and corporations.

3D printers capable of outputting in colour and multiple materials already exist and will continue to improve to a point where functional products will be able to be output. With effects on energy use, waste reduction, customization, product availability, medicine, art, construction and sciences, 3D printing will change the manufacturing world as we know it.

If you’re interested in more future predictions regarding 3D printing, check out The Future Of Open Fabrication.

Services

Not everybody can afford or is willing to buy their own 3D printer. Does this mean you cannot enjoy the possibilities of 3D printing? No, not to worry. There are 3D printing service bureaus like ShapewaysPonoko and Sculpteo that can very inexpensively print and deliver an object from a digital file that you simply upload to their website. You can even sell your 3D designs on their website and make a little money out of it!

There are also companies who offer their services business-to-business. When, for instance, you have an architecture practice and you need to build model scales, it is very time consuming doing this the old fashioned way. There are services where you can send your digital model to and they print the building on scale for you to use in client presentations. These kind of services can already be found in a lot of different industries like dental, medical, entertainment and art.

3D Marketplaces

If you don’t have the skills to design your own 3D models, you can still print some very nice objects. 3D marketplaces such as Pinshape and CGTrader contain 3d model files you can download for a small charge or for free.

 

 

 

Read Full Post »