New CRISPR Approach Transforms Skin Cells into Pluripotent Stem Cells
Reporter: Irina Robu, PhD
Dr. Timo Otonkoski, University of Helsinki and Dr.Juha Kere, King’s College London succeeded on reprograming skin cells into pluripotent stem cells by activating cell’s own genes using gene editing technology, CRISPR-Cas9-based gene activation (CRISPRa) that can be used to activate genes. The method uses a blunt version of Cas9 ‘gene scissors’ that does not cut DNA and can consequently be used to activate gene expression without mutating the genome. Previously, reprogramming was only possible by artificially introducing the critical transformation genes known as Yamanaka Factors into skin cells where they are normally inactive.
According to a study that is published in Nature Communication, called Human Pluripotent Reprogramming with CRISPR activators which show that CRISPRa is an attractive tool for cellular reprogramming applications due to its high multiplex capacity and direct alignment of endogenous loci. In the article, it is presented that reprogramming of primary human dermal fibroblasts to induced pluripotent stem cells with CRISPRa, the aimed at endogenous cells. The data shows that human body cells can only be reprogrammed into iPS cells with CRISPRa, and the findings reveal the involvement of EEA motif-associated mechanisms in cellular reprogramming.
The discovery also advocates that it might be likely to improve many other reprogramming tasks by addressing genetic elements that are typical of the intended target cell type. According to Jere Weltner, PhD student working on the project “the technology can find practical application in biobanking and many other applications of tissue technology.
SOURCE
https://www.sciencedaily.com/releases/2018/07/180706091723.htm
Leave a Reply