GE’s $40 Million Center for Additive Technology Advancement (CATA)
Reporter: Danut Dragoi, PhD
UPDATED on 9/6/2016
G.E. Offers $1.4 Billion for 3-D Printing Technology Companies
By CHAD BRAY SEPT. 6, 2016
In GE 3-D printing technology is used to create gas turbine parts and other applications in HealthCare and in Aerospace.
G.E. said it had invested about $1.5 billion in manufacturing and 3-D printing technology since 2010, and added that it expected its new additive manufacturing business to achieve $1 billion in revenue by 2020.
“Additive manufacturing is a key part of G.E.’s evolution into a digital industrial company,” Jeffrey R. Immelt, the G.E. chairman and chief executive, said in a news release.
Arcam, based in Molndal, Sweden, is a provider of metal-based 3-D printing technology, primarily for the aerospace and health care industries. It had $68 million in revenue in 2015 and about 285 employees.
SLM Solutions, based in Lübeck, Germany, which went public two years ago, said in a news release that G.E. had offered to pay 38 euros, about $42.40, a share for the company, a 36.7 percent premium to its closing price on Monday.
If the acquisitions are completed, the companies would report to David L. Joyce, president and chief executive of GE Aviation
SOURCE
GE’s $40 Million Center for Additive Technology Advancement (CATA)
Reporter: Danut Dragoi, PhD
While many are aware of the big names in 3D printing, it still often comes as a surprise to some to find out that General Electric has had their hands in the technology for a long time, and they just keep getting more and more invested. So, if you are wondering about the future of 3D printing or whether or not it’s really catching on, just the fact that GE is opening another multi-million-dollar facility should be a pretty big hint—as well as the fact that they want all of their related businesses getting in on the technology.
It’s also very exciting for us to see what GE is working on further, especially regarding their new Center for Additive Technology Advancement (CATA) in Pittsburgh, which celebrated their grand opening on Tuesday. The city of Pittsburgh is probably most pumped, however, looking forward not just to the activity that the facility will bring, but probably most likely quite happy to have GE declare them as the next industry leader for 3D printing in terms of geography; in fact, the reason GE set up their new $39 million General Electric plant off of a highway exit very near the airport was because of the proximity to Carnegie Mellon University, the University of Pittsburgh and Penn State University—all of whom are very involved in 3D printing—and whose outstanding projects we continue to follow as well. We’ve also followed activity on the part of GE over the years as they have poured millions into 3D printing expansion, and moved into countries like India with multiple facilities.
Now, in the traditional manufacturing setting of Pittsburgh, General Electric is employing numbers of laser 3D printers in the manufacturing of everything from jet engine blades to oil valves. Picture below shows a jet engine blades model that GE engineers produced using an advanced 3-D printing technique called direct metal laser melting. This additive manufacturing method is producing a growing list of parts for numerous industries, making stronger components with less material waste that are impossible to create using traditional techniques.
Image SOURCE: http://www.ge.com/stories/advanced-manufacturing
CATA is funded by each of the GE businesses, with the goal of integrating 3D printing for all. GE has historically been very involved with 3D printing to create fuel nozzles for jet engines, see picture below.
Image SOURCE: https://3dprint.com/128490/pittsburgh-ge-cata/
All eight of the company’s manufacturing divisions will use the 125,000-square-foot facility to test new designs and ideas, with 50 high-tech engineers employed there. While currently the CATA facility has just several 3D metal printing machines, they are also, according to GE Reports, going to add an additional $10 million in machines this year, with a $2 million DMLM printer that has four lasers and can print four different components simultaneously.
The CATA facility also holds a sand binder jetting machine, excellent for rapid prototyping. Rather than employing a laser, it uses a chemical binder to use sand as the material for casting molds. Picture below shows a Jell-O mold for the jelly which is a work in progress prototyping for sand binder jetting machine.
Image SOURCE: https://3dprint.com/128490/pittsburgh-ge-cata/
With their Poly-jet printers, GE engineers are able to combine polymers and make parts with different qualities and colors. The goal is to push the limits of additive manufacturing and stay at the forefront of innovation within the industry. The CATA industrialization lab is meant to promote this mission, allowing GE businesses to bring in their 3D printing concepts and optimize them, as well as working to bring them to fruition. It sounds like they might just be having a little bit of fun in the process too.
Source
http://www.ge.com/stories/advanced-manufacturing
Leave a Reply