
Best Big Data?
Larry H. Bernstein, MD, FCAP, Curator
LPBI
Google’s RankBrain Outranks the Best Brains in the Industry
Bloomberg recently broke the news that Google is “turning its lucrative Web search over to AI machines.” Google revealed to the reporter that for the past few months, a very large fraction of the millions of search queries Google responds to every second have been “interpreted by an artificial intelligence system, nicknamed RankBrain.”
The company that has tried hard to automate its mission to organize the world’s information was happy to report that its machines have again triumphed over humans. When Google search engineers “were asked to eyeball some pages and guess which they thought Google’s search engine technology would rank on top,” RankBrain had an 80% success rate compared to “the humans [who] guessed correctly 70 percent of the time.”
There you have it. Google’s AI machine RankBrain, after only a few months on the job, already outranks the best brains in the industry, the elite engineers that Google typically hires.
Or maybe not. Is RankBrain really “smarter than your average engineer” and already “living up to its AI hype,” as the Bloomberg article informs us, or is this all just, well, hype?
Desperate to find out how far our future machine overlords are already ahead of the best and the brightest (certainly not “average”), I asked Google to shed more light on the test, e.g., how do they determine the “success rate”?
“That test was fairly informal, but it was some of our top search engineers looking at search queries and potential search results and guessing which would be favored by users. (We don’t have more detail to share on how that’s determined; our evaluations are a pretty complex process).”
I guess both RankBrain and Google search engineers were given possible search results to a given query and RankBrain outperformed humans in guessing which are the “better” results, according to some undisclosed criteria.
I don’t know about you, but my TinyBrain is still confused. Wouldn’t Google search engine, with or without RankBrain, outperform any human being, including the smartest people on earth, in terms of “guessing” which search results “would be favored by users”? Haven’t they been mining the entire corpus of human knowledge for more than fifteen years and, by definition, have produced a search engine that “understands” relevance more than any individual human being?
The key to the competition, I guess, is that the “search queries” used in it were not just any search queries but complex queries containing words that have different meaning in different context. It’s the kind of queries that will stump most human beings and it’s quite surprising that Google engineers scored 70% on search queries that presumably require deep domain knowledge in all human endeavors, in addition to search expertise.
The only example of a complex query given in the Bloomberg article is “What’s the title of the consumer at the highest level of a food chain?” The word “consumer” in this context is a scientific term for something that consumes food and the label (the “title”) at highest level of the food chain is “predator.”
This explanation comes from search guru Danny Sullivan who has come to the rescue of perplexed humans like me, providing a detailed RankBrain FAQ, up to the limits imposed by Google’s legitimate reluctance to fully share its secrets. Sullivan: “From emailing with Google, I gather RankBrain is mainly used as a way to interpret the searches that people submit to find pages that might not have the exact words that were searched for.”
Sullivan points out that a lot of work done by humans is behind Google’s outstanding search results (e.g., creating a synonym list or a database with connections between “entities”—places, people, ideas, objects, etc.). But Google needs now to respond to some 450 million new queries per day, queries that have never been entered before into its search engine.
RankBrain “can see patterns between seemingly unconnected complex searches to understand how they’re actually similar to each other,” writes Sullivan. In addition, “RankBrain might be able to better summarize what a page is about than Google’s existing systems have done.”
Finding out the “unknown unknowns,” discovering previously unknown (to humans) links between words and concepts is the marriage of search technology with the hottest trend in big data analysis—deep learning. The real news about RankBrain is that it is the first time Google applied deep learning, the latest incarnation of “neural networks” and a specific type of machine learning, to its most prized asset—its search engine.
Google has been doing machine learning since its inception. The first published paper listed in the AI and machine learning section of its research page is from 2001, and, to use just one example, Gmail is so good at detecting spam because of machine learning). But Goggle hasn’t applied machine learning to search. That there has been internal opposition to doing so we learn from a summary of a 2008 conversation between Anand Rajaraman and Peter Norvig, co-author of the most popular AI textbook and leader of Google search R&D since 2001. Here’s the most relevant excerpt:
The big surprise is that Google still uses the manually-crafted formula for its search results. They haven’t cut over to the machine learned model yet. Peter suggests two reasons for this. The first is hubris: the human experts who created the algorithm believe they can do better than a machine-learned model. The second reason is more interesting. Google’s search team worries that machine-learned models may be susceptible to catastrophic errors on searches that look very different from the training data. They believe the manually crafted model is less susceptible to such catastrophic errors on unforeseen query types.
This was written three years after Microsoft has applied machine learning to its search technology. But now, Google got over its hubris. 450 million unforeseen query types per day are probably too much for “manually crafted models” and google has decided that a “deep learning” system such as RankBrain provides good enough protection against “catastrophic errors.”
Leave a Reply