Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Vasopressor therapy’


Sepsis Detection using an Algorithm More Efficient than Standard Methods

Reporter : Irina Robu, PhD

Sepsis is a complication of severe infection categorized by a systemic inflammatory response with mortality rates between 25% to 30% for severe sepsis and 40% to 70% for septic shock. The most common sites of infection are the respiratory, genitourinary, and gastrointestinal systems, as well as the skin and soft tissue. The first manifestation of sepsis is fever with pneumonia being the most common symptom of sepsis with initial treatment which contains respiratory stabilization shadowed by aggressive fluid resuscitation. When fluid resuscitation fails to restore mean arterial pressure and organ perfusion, vasopressor therapy is indicated.

However, a machine-learning algorithm tested by Christopher Barton, MD from UC-San Francisco has exceeded the four typical methods used for catching sepsis early in hospital patients, giving clinicians up to 48 hours to interfere before the condition has a chance to begin turning dangerous. The four standard methods were Systemic Inflammatory Response Syndrome (SIRS) criteria, Sequential (Sepsis-Related) Organ-Failure Assessment (SOFA) and Modified Early Warning System (MEWS). The purpose of dividing the data sets between two far-flung institutions was to train and test the algorithm on demographically miscellaneous patient populations.

The patients involved in the study were admitted to hospital without sepsis and all had at least one recording of each of six vital signs such as oxygen levels in the blood, heart rate, respiratory rate, temperature, systolic blood pressure and diastolic blood pressure. Even though they were admitted to the hospital without it, some have contracted sepsis during their stay while others did not. Researchers used their algorithm detection versus the standard methods applied at sepsis onset at 24 hours and 48 hours prior.
Even though sepsis affects at least 1.7 million adults mostly outside of the hospital settings, nearly 270,000 die. Researchers are hoping that the algorithm would allow clinicians to interfere prior to the condition becoming deadly.

SOURCE
https://www.aiin.healthcare/topics/diagnostics/sepsis-diagnosis-machine-learning

Advertisements

Read Full Post »