Feeds:
Posts
Comments

Posts Tagged ‘River fever’


Recent Insights in Drug Development

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

A Better Class of Cancer Drugs
http://www.technologynetworks.com/medchem/news.aspx?ID=183124
An SDSU chemist has developed a technique to identify potential cancer drugs that are less likely to produce side effects.
A class of therapeutic drugs known as protein kinase inhibitors has in the past decade become a powerful weapon in the fight against various life-threatening diseases, including certain types of leukemia, lung cancer, kidney cancer and squamous cell cancer of the head and neck. One problem with these drugs, however, is that they often inhibit many different targets, which can lead to side effects and complications in therapeutic use. A recent study by San Diego State University chemist Jeffrey Gustafson has identified a new technique for improving the selectivity of these drugs and possibly decreasing unwanted side effects in the future.

Why are protein kinase–inhibiting drugs so unpredictable? The answer lies in their molecular makeup.

Many of these drug candidates possess examples of a phenomenon known as atropisomerism. To understand what this is, it’s helpful to understand a bit of the chemistry at work. Molecules can come in different forms that have exactly the same chemical formula and even the same bonds, just arranged differently. The different arrangements are mirror images of each other, with a left-handed and a right-handed arrangement. The molecules’ “handedness” is referred to as chirality. Atropisomerism is a form of chirality that arises when the spatial arrangement has a rotatable bond called an axis of chirality. Picture two non-identical paper snowflakes tethered together by a rigid stick.

Some axes of chirality are rigid, while others can freely spin about their axis. In the latter case, this means that at any given time, you could have one of two different “versions” of the same molecule.

Watershed treatment

As the name suggests, kinase inhibitors interrupt the function of kinases—a particular type of enzyme—and effectively shut down the activity of proteins that contribute to cancer.

“Kinase inhibition has been a watershed for cancer treatment,” said Gustafson, who attended SDSU as an undergraduate before earning his Ph.D. in organic chemistry from Yale University, then working there as a National Institutes of Health poctdoctoral fellow in chemical biology.

“However, it’s really hard to inhibit a single kinase,” he explained. “The majority of compounds identified inhibit not just one but many kinases, and that can lead to a number of side effects.”

Many kinase inhibitors possess axes of chirality that are freely spinning. The problem is that because you can’t control which “arrangement” of the molecule is present at a given time, the unwanted version could have unintended consequences.

In practice, this means that when medicinal chemists discover a promising kinase inhibitor that exists as two interchanging arrangements, they actually have two different inhibitors. Each one can have quite different biological effects, and it’s difficult to know which version of the molecule actually targets the right protein.

“I think this has really been under-recognized in the field,” Gustafson said. “The field needs strategies to weed out these side effects.”

Applying the brakes

So that’s what Gustafson did in a recently published study. He and his colleagues synthesized atropisomeric compounds known to target a particular family of kinases known as tyrosine kinases. To some of these compounds, the researchers added a single chlorine atom which effectively served as a brake to keep the atropisomer from spinning around, locking the molecule into either a right-handed or a left-handed version.

When the researchers screened both the modified and unmodified versions against their target kinases, they found major differences in which kinases the different versions inhibited. The unmodified compound was like a shotgun blast, inhibiting a broad range of kinases. But the locked-in right-handed and left-handed versions were choosier.

“Just by locking them into one or another atropisomeric configuration, not only were they more selective, but they  inhibited different kinases,” Gustafson explained.

If drug makers incorporated this technique into their early drug discovery process, he said, it would help identify which version of an atropisomeric compound actually targets the kinase they want to target, cutting the potential for side effects and helping to usher drugs past strict regulatory hurdles and into the hands of waiting patients.

 

Inroads Against Leukaemia
http://www.technologynetworks.com/medchem/news.aspx?ID=183594

 

Potential for halting disease in molecule isolated from sea sponges.
A molecule isolated from sea sponges and later synthesized in the lab can halt the growth of cancerous cells and could open the door to a new treatment for leukemia, according to a team of Harvard researchers and other collaborators led by Matthew Shair, a professor of chemistry and chemical biology.

“Once we learned this molecule, named cortistatin A, was very potent and selective in terms of inhibiting the growth of AML [acute myeloid leukemia] cells, we tested it in mouse models of AML and found that it was as efficacious as any other molecule we had seen, without having deleterious effects,” Shair said. “This suggests we have identified a promising new therapeutic approach.”

It’s one that could be available to test in patients relatively soon.

“We synthesized cortistatin A and we are working to develop novel therapeutics based on it by optimizing its drug-like properties,” Shair said. “Given the dearth of effective treatments for AML, we recognize the importance of advancing it toward clinical trials as quickly as possible.”

The drug-development process generally takes years, but Shair’s lab is very close to having what is known as a development candidate that could be taken into late-stage preclinical development and then clinical trials. An industrial partner will be needed to push the technology along that path and toward regulatory approval. Harvard’s Office of Technology Development (OTD) is engaged in advanced discussions to that end.

The molecule works, Shair explained, by inhibiting a pair of nearly identical kinases, called CDK8 and CDK19, that his research indicates play a key role in the growth of AML cells.

The kinases operate as part of a poorly understood, massive structure in the nucleus of cells called the mediator complex, which acts as a bridge between transcription factors and transcriptional machinery. Inhibiting these two specific kinases, Shair and colleagues found, doesn’t shut down all transcription, but instead has gene-specific effects.

“We treated AML cells with cortistatin A and measured the effects on gene expression,” Shair said. “One of the first surprises was that it’s affecting a very small number of genes — we thought it might be in the thousands, but it’s in the low hundreds.”

When Shair, Henry Pelish, a senior research associate in chemistry and chemical biology, and then-Ph.D. student Brian Liau looked closely at which genes were affected, they discovered many were associated with DNA regulatory elements known as “super-enhancers.”

“Humans have about 220 different types of cells in their body — they all have the same genome, but they have to form things like skin and bone and liver cells,” Shair explained. “In all cells, there are a relatively small number of DNA regulatory elements, called super-enhancers. These super-enhancers drive high expression of genes, many of which dictate cellular identity. A big part of cancer is a situation where that identity is lost, and the cells become poorly differentiated and are stuck in an almost stem-cell-like state.”

While a few potential cancer treatments have attacked the disease by down-regulating such cellular identity genes, Shair and colleagues were surprised to find that their molecule actually turned up the activity of those genes in AML cells.

“Before this paper, the thought was that cancer is ramping these genes up, keeping the cells in a hyper-proliferative state and affecting cell growth in that way,” Shair said. “But our molecule is saying that’s one part of the story, and in addition cancer is keeping the dosage of these genes in a narrow range. If it’s too low, the cells die. If they are pushed too high, as with cortistatin A, they return to their normal identity and stop growing.”

Shair’s lab became interested in the molecule several years ago, shortly after it was first isolated and described by other researchers. Early studies suggested it appeared to inhibit just a handful of kinases.

“We tested approximately 400 kinases, and found that it inhibits only CDK8 and CDK19 in cells, which makes it among the most selective kinase inhibitors identified to date,” Shair said. “Having compounds that precisely hit a specific target, like cortistatin A, can help reduce side effects and increase efficacy. In a way, it shatters a dogma because we thought it wasn’t possible for a molecule to be this selective and bind in a site common to all 500 human kinases, but this molecule does it, and it does it because of its 3-D structure. What’s interesting is that most kinase-inhibitor drugs do not have this type of 3-D structure. Nature is telling us that one way to achieve this level of specificity is to make molecules more like cortistatin A.”

Shair’s team successfully synthesized the molecule, which helped them study how it worked and why it affected the growth of a very specific type of cell. Later on, with funding and drug-development expertise provided by Harvard’s Blavatnik Biomedical Accelerator, Shair’s lab created a range of new molecules that may be better suited to clinical application.

“It’s a complex process to make [cortistatin A] — 32 chemical steps,” said Shair. “But we have been able to find less complex structures that act just like the natural compound, with better drug-like properties, and they can be made on a large scale and in about half as many steps.”

“Over the course of several years, we have watched this research progress from an intriguing discovery to a highly promising development candidate,” said Isaac Kohlberg, senior associate provost and chief technology development officer. “The latest results are a real testament to Matt’s ingenuity and dedication to addressing a very tough disease.”

While there is still much work to be done — in particular, to better understand how CDK8 and CDK19 regulate gene expression — the early results have been dramatic.

“This is the kind of thing you do science for,” Shair said, “the idea that once every 10 or 20 years you might find something this interesting, that sheds new light on important, difficult problems. This gives us an opportunity to generate a new understanding of cancer and also develop new therapeutics to treat it. We’re very excited and curious to see where it goes.”

 

Seeking A Better Way To Design Drugs

http://www.technologynetworks.com/medchem/news.aspx?ID=183338

NIH funds research at Worcester Polytechnic Institute to advance a new chemical process for more effective drug development and manufacturing.
The National Institutes of Health (NIH) has awarded $346,000 to Worcester Polytechnic Institute (WPI) for a three-year research project to advance development of a chemical process that could significantly improve the ability to design new pharmaceuticals and streamline the manufacturing of existing drugs.

Led by Marion Emmert, PhD, assistant professor of chemistry and biochemistry at WPI, the research program involves early-stage technology developed in her lab that may yield a more efficient and predictable method of bonding a vital class of structures called aromatic and benzylic amines to a drug molecule.

“Seven of the top 10 pharmaceuticals in use today have these substructures, because they are so effective at creating a biologically active compound,” Emmert said. “The current processes used to add these groups are indirect and not very efficient. So we asked ourselves, can we do it better? ”

For a drug to do its job in the body it must interact with a specific biological target and produce a therapeutic effect. First, the drug needs to physically attach or “bind” to the target, which is a specific part of a cell, protein, or molecule. As a result, designing a new drug is like crafting a three-dimensional jigsaw puzzle piece that fits precisely into an existing biological structure in the body. Aromatic and benzylic amines add properties to the drug that help it bind more efficiently to these biological structures.

Getting those aromatic and benzylic amines into the structure of a drug, however, is difficult. Traditionally, this requires a specialized chemical bond as precursor in a specific location of the drug’s molecular structure. “The current approach to making those bonds is indirect, requires several lengthy steps, and the outcome is not always precise or efficient,” Emmert said. “Only a small percentage of the bonds can be made in the proper place, and sometimes none at all.”

Emmert’s new approach uses novel reagents and metal catalysts to create a process that can attach amines directly, in the right place, every time. In early proof-of-principle experiments, Emmert has succeeded in making several amine bonds directly in one or two days, whereas the standard process can take two weeks with less accuracy. Over the next three years, with support from the NIH, Emmert’s team will continue to study the new catalytic processes in detail. They will also use the new process to synthesize Asacol, a common drug now in use for ulcerative colitis, and expect to significantly shorten its production.

“Some of our early data are promising, but we have a lot more work to do to understand the basic mechanisms involved in the new processes,” Emmert said. “We also have to adapt the process to molecules that could be used directly for drug development.”

 

Antiparasite Drug Developers Win Nobel

William Campbell, Satoshi Omura, and Youyou Tu have won this year’s Nobel Prize in Physiology or Medicine in recognition of their contributions to antiparasitic drug development.

By Karen Zusi and Tracy Vence | October 5, 2015

http://www.the-scientist.com//?articles.view/articleNo/44159/title/Antiparasite-Drug-Developers-Win-Nobel/

William Campbell, Satoshi Omura, and Youyou Tu have made significant contributions to treatments for river blindness, lymphatic filariasis, and malaria; today (October 5) these three scientists were jointly awarded the 2015 Nobel Prize in Physiology or Medicine in recognition of these advancements.

Tu is being recognized for her discoveries leading to the development of the antimalarial drug artemisinin. Campbell and Omura jointly received the other half of this year’s prize for their separate work leading to the discovery of the drug avermectin, which has been used to develop therapies for river blindness and lymphatic filariasis.

“These discoveries are now more than 30 years old,” David Conway, a professor of biology of the London School of Hygiene & Tropical Medicine, told The Scientist. “[These drugs] are still, today, the best two groups of compounds for antimalarial use, on the one hand, and antinematode worms and filariasis on the other.”

Omura, a Japanese microbiologist at Kitasato University in Tokyo, isolated strains of the soil bacteriaStreptomyces in a search for those with promising antibacterial activity. He eventually narrowed thousands of cultures down to 50.

Now research fellow emeritus at Drew University in New Jersey, Campbell spent much of his career at Merck, where he discovered effective antiparasitic properties in one of Omura’s cultures and purified the relevant compounds into avermectin (later refined into ivermectin).

“Bill Campbell is a wonderful scientist, a wonderful man, and a great mentor for undergraduate students,” said his colleague Roger Knowles, a professor of biology at Drew University. “His ability to speak about disease mechanisms and novel strategies to help [fight] these diseases. . . . that’s been a great boon to students.”

Tu began searching for a novel malaria treatment in the 1960s in traditional herbal medicine. She served as the head of Project 523, a program at the China Academy of Chinese Medical Sciences in Beijing aimed at finding new drugs for malaria. Tu successfully extracted a promising compound from the plant Artemisia annu that was highly effective against the malaria parasite. In recognition of her malaria research, Tu won a Lasker Award in 2011.

 

Optogenetics Advances in Monkeys

Researchers have selectively activated a specific neural pathway to manipulate a primate’s behavior.

By Kerry Grens | October 5, 2015

http://www.the-scientist.com//?articles.view/articleNo/44156/title/Optogenetics-Advances-in-Monkeys/

Scientists have used optogenetics to target a specific neural pathway in the brain of a macaque monkey and alter the animal’s behavior. As the authors reported in Nature Communications last month, such a feat had been accomplished only in rodents before.

Optogenetics relies on the insertion of a gene for a light-sensitive ion channel. When present in neurons, the channel can turn on or off the activity of a neuron, depending on the flavor of the channel. Previous attempts to use optogenetics in nonhuman primates affected brain regions more generally, rather than particular neural circuits. In this case, Masayuki Matsumoto of Kyoto University and colleagues delivered the channel’s gene specifically to one area of the monkey’s brain called the frontal eye field.

They found that not only did the neurons in this region respond to light shone on the brain, but the monkey’s behavior changed as well. The stimulation caused saccades—quick eye movements. “Our findings clearly demonstrate the causal relationship between the signals transmitted through the FEF-SC [frontal eye field-superior colliculus] pathway and saccadic eye movements,” Matsumoto and his colleagues wrote in their report.

“Over the decades, electrical microstimulation and pharmacological manipulation techniques have been used as tools to modulate neuronal activity in various brain regions, permitting investigators to establish causal links between neuronal activity and behaviours,” they continued. “These methodologies, however, cannot selectively target the activity (that is, the transmitted signal) of a particular pathway connecting two regions. The advent of pathway-selective optogenetic approaches has enabled investigators to overcome this issue in rodents and now, as we have demonstrated, in nonhuman primates.”

Read Full Post »