Posts Tagged ‘red blood cells’

Melatonin and its effect on acetylcholinesterase activity in erythrocytes

Author: S. Chakravarty, PhD


Objective: The study was conducted to see the effect of melatonin on the activity of acetylcholinesterase in red blood cells.

Mammalian red blood cells contain membrane-bound acetylcholinesterase which acts as biomarkers of oxidative imbalance. Melatonin is a powerful free radical scavenger and upregulates several antioxidant enzymes to reduce oxidative stress. Being an effective antioxidant, it may initiate variation in erythrocyte acetylcholinesterase activity.

The study was carried out on twenty-nine subjects of both sexes who gave their informed consent for the use of their blood samples for the study (Chakravarty and Rizvi, 2011a). The red cells isolated from blood collected at two different timings of the day, viz., 10:00 a.m. and 10:00 p.m.,were subjected to in vitro treatment with melatonin in a dose-dependant manner followed by the assay of enzyme activity (Ellman et al., 1961).

Acetylcholinesterase (AChE) is also found on the red blood cell membranes, where it constitutes the Yt blood group of antigen, which is a blood-group determining protein. AChE has the features of a secreted rather than a transmembrane protein because it lacks long hydrophobic stretches, other than that which forms the signal peptide (Li et al., 1991). Besides, acetylcholinesterase activity in erythrocytes may be considered as a marker of central cholinergic status (Kaizer et al., 2008). AChE shows highest activity in the immature rat brain is at 6.00 a.m. and lowest after midnight, which undergoes a reversal after attaining maturity (Moudgil and Kanungo, 1973). The enzyme also exhibits annual changes in its activity (Lewandowski, 2008). Acetylcholinesterase activity has been used to for studying the activity pattern of human erythrocytes (Prall et al., 1998). Free radicals and increased oxidative stress have been found to reduce AChE activity (Molochkina et al., 2005). This indicates that melatonin may have some relation with the circadian rhythmicity of acetylcholinesterase activity.

The concentration-dependant assay of AChE activity in red cells bear close relation with the circadian rhythm in humans thus sharing a similar conclusion with that mentioned by Moudgil and Kanungo (Moudgil and Kanungo, 1973). The effect of melatonin on enzyme functions in erythrocytes follows rhythmic modulation with day/night cycle. The samples obtained in the morning exhibit significantly higher activity of acetylcholinesterase than those obtained during the night-time. The samples collected at two different timings of the day show different response to in vitro melatonin treatment. The rise in AChE activity is more pronounced at low doses of melatonin. Our results indicate significant increase in acetylcholinesterase activity in diurnal as well as nocturnal blood samples at different concentrations of exogenous melatonin (Rizvi and Chakravarty, 2011). At supraphysiological doses, the enzyme activity exhibits no significant change, owing to the prooxidative influence exerted by melatonin (Marchiafava and Longoni, 1999).

Acetylcholinesterase activity is affected by the hydrophobic environment of the cell membrane and depends on the plasma membrane fluidity and surface charge of the cell (Klajnert et al., 2004).  The activity of AChE depends largely on the biophysical features of membrane. Oxidative stress decreases the fluidity of membrane lipid bilayer, thus affecting its normal functions (Goi et al., 2005).  Such are the ill-effects of oxidative radicals that tend to increase with aging. The decrease in AChE correlates significantly with age-induced oxidative stress (Jha and Rizvi, 2009).  On the basis of our study we conclude that melatonin modulates acetylcholinesterase activity in erythrocytes. The rhythmicity observed in the activity of acetylcholinesterase in response to the melatonin confirms our opinion on the relationship between the enzyme function, pineal secretion and pharmacological dosage of the indole antioxidant.


  1. Chakravarty S, Rizvi SI, Circadian modulation of sodium-potassium ATPase and sodium-proton exchanger in human erythrocytes: in vitro effect of melatonin. <a href=”80-6. “http://www.ncbi.nlm.nih.gov/pubmed/21366966
  2. Ellman GL, Courtney KD,      Andres Jr V, Featherstone RM, A new and rapid colorimeteric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88–95.
  3. Goi G, Cazzola R,      Tringali C, Massaccesi L, Volpe SR, Rondanelli M, Ferrari      E, Herrera      CJ, Cestaro      B, Lombardo      A, Venerando      B, Erythrocyte membrane alterations during      ageing affect beta-D-glucuronidase and neutral sialidase in elderly      healthy subjects. Exp Gerontol 2005; 40(3): 219-25.
  4. http://www.ncbi.nlm.nih.gov/pubmed/?term=alterations+during++++++ageing+affect+beta-D-glucuronidase+and+neutral+sialidase+in+elderly++++++healthy+subjects.
  5. Jha R, Rizvi SI, Age-dependant  decline in erythrocyte acetylcholinesterase activity: correlation with oxidative stress. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153(3):195–8.
  6. http://www.ncbi.nlm.nih.gov/pubmed/19851431
  7. Kaizer RR, Correa MC, Gris LR, Da Rosa CS, Bohrer D, Morsch VM, Schetinger MR, Effect of long-term exposure to aluminum on the acetylcholinesterase activity in the central nervous system and erythrocytes. Neurochem Res 2008; 33(11):2294-301.
  8. http://www.ncbi.nlm.nih.gov/pubmed/?term=Effect+of+long-term+exposure+to+aluminum+on+the+acetylcholinesterase+activity+in+the+central+nervous+system+and+erythrocytes.
  9. Klajnert B, Sadowska M,      Bryszewska M, The effect of polyamidoamine dendrimers on human erythrocyte membrane acetylcholinesterase activity. Bioelectrochem 2004; 65(1): 23-6.
  10. http://www.ncbi.nlm.nih.gov/pubmed/?term=The+effect+of+polyamidoamine+dendrimers+on+human+erythrocyte+membrane+acetylcholinesterase+activity.
  11. Lewandowski MH, Annual changes of circadian acetylcholinesterase activity in the brain stem compared to locomotor activity of the mouse under LD 12/12. J Interdisiplinary Cycle Res 1990; 21 (1): 25-32.
  12. http://www.tandfonline.com/doi/abs/10.1080/09291019009360023?journalCode=nbrr19
  13. Li Y, Camp      S, Rachinsky TL, Getman D, Taylor P, Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem 1991; 266(34): 23083–90.
  14. http://www.ncbi.nlm.nih.gov/pubmed/?term=Gene+structure+of+mammalian+acetylcholinesterase.+Alternative+exons+dictate+tissue-specific+expression
  15. Marchiafava PL, Longoni B, Melatonin as an antioxidant in retinal photoreceptors. J Pineal Res 1999; 26(3): 184-89.
  16. http://www.ncbi.nlm.nih.gov/pubmed/10231733
  17. Molochkina EM, Zorina OM, Fatkullina LD, Goloschapov AN, Burlakova EB, H2O2 modifies membrane structure and activity of acetylcholinesterase. Chem Biol Interact 2005; 157-158(1): 401-4.
  18. http://www.ncbi.nlm.nih.gov/pubmed/?term=H2O2+modifies+membrane+structure+and+activity+of+acetylcholinesterase.
  19. Moudgil VK, Kanungo MS, Effect of age on the circadian rhythm of acetylcholinesterase of the brain of the rat. Comp Gen Pharmacol 1973; 4(14):127-30.
  20. http://www.ncbi.nlm.nih.gov/pubmed/4770270
  21. Prall YG, Gambhir KK, Ampy FR, Acetylcholinesterase: an enzymatic marker of human red blood cell aging. Life Sci 1998; 63(3): 177-84.
  22. http://www.ncbi.nlm.nih.gov/pubmed/?term=Acetylcholinesterase%3A+an+enzymatic+marker+of+human+red+blood+cell+aging
  23. Rizvi SI, Chakravarty S, Modulation of acetylcholiesterase activity by melatonin in red blood cells. Acta Endocrinologica (Buc), 2011; 8(3): 311-16..





Read Full Post »

%d bloggers like this: