Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Matthias Rath’


Reporters: Aviva Lev-Ari, PhD, RN & Pnina G. Abir-Am, PhD

Experimenting with Lipoprotein(a)

Posted on January 9, 2013 by scarc

lpa

[Part 1 of 2]

In the late 1980s into early 1990, Linus Pauling and a colleague, Matthias Rath, worked intensively on the health benefits of Vitamin C and Lipoprotein(a) binding inhibitors. In 1990 they applied for two patents related to that research. The first, applied for in April, was titled “Use of ascorbate and tranexamic acid solution for organ and blood vessel treatment prior to transplantation.” The second, submitted in July, was titled “Prevention and treatment of occlusive cardiovascular disease with ascorbate and substances that inhibit the binding of lipoprotein (A).”

The technique that Pauling and Rath were attempting to patent in April was both a method and a pharmaceutical agent designed to prevent and treat fatty plaque buildup in arteries and organs and also prevent blood loss during surgery by introducing into a patient (or organ) a mixture of ascorbate and lipoprotein(a) [Lp(a)] binding inhibitors, such as tranexamic acid.

Tranexamic acid is a synthetic version of Lysine, and ascorbate is the shortened name for L-ascorbic acid, or more commonly, Vitamin C. Lp(a) is a biochemical compound of lipids and proteins which binds to fibrin and fibrogen in the walls of arteries and other organs, which causes plaque buildup, which in turn often results in atherosclerosis – the thickening and embrittling of arterial walls – and cardiovascular disease (CVD), one of the most common causes of death in the United States. The second patent described effectively the same method, but focused more on CVD and less on surgery.

Pauling and Rath noticed that humans and a select few other animals are the only creatures that suffer from heart attacks and other issues associated with the buildup of plaque in the circulatory system. One common link between all of these creatures is the fact that they do not naturally produce Vitamin C, and therefore must obtain it solely through diet. The duo hypothesized that the cause of Lp(a) buildup was due to a lack of Vitamin C, and that if Vitamin C intake was increased, it would help the body filter out Lp(a) and therefore decrease the amount of Lp(a) in the bloodstream. They decided to run tests on Hartley guinea pigs, since they are one of the few other animals that don’t synthesize their own Vitamin C.

rath

The first test was run on three female guinea pigs, each about a year old and weighing 800 grams. The animals were all fed a diet devoid of ascorbate (e.g., a hypoascorbate diet), and given an injection daily of ascorbate so that Pauling and Rath could easily monitor and control their intake. The first pig was given ascorbate at a ratio equivalent to 1 mg per kilogram of body weight (1 mg/kg BW). The second pig was given 4 mg/kg BW, and the third was given 40 mg/kg BW.

The experiment only lasted three weeks, because Pauling and Rath didn’t want to inflict scurvy upon the guinea pigs. Creatures deprived of Vitamin C for prolonged periods develop scurvy, an incredibly painful condition where the victim becomes lethargic and begins to suffer skin color and texture changes, easy bruising, brittle and painful bones, poor wound healing, neuropathy, fever and eventually death.

The guinea pigs had their blood drawn at the start of the test, then once again after ten days. At the end of three weeks, the animals were anesthetized and euthanized, then dissected. Their results showed that the hypoascorbate guinea pigs had noticeably higher plaque buildup and general amounts of Lp(a) in their bloodstream. Upon closer analysis of the organs and the arterial wall, the researchers discovered that the guinea pigs had also developed lesions along the walls of their arteries, to which Lp(a) was binding even more than normal.

Pauling and Rath then ran a more expansive second test, with a test time of seven weeks and a test group of thirty-three male Hartley guinea pigs, each approximately five months old and weighing 550g. At the outset, the subjects were split into multiple groups. Group A consisted of eight guinea pigs and was given 40 mg/kg BW of ascorbate daily, while Group B consisted of 16 guinea pigs given 2 mg/kg BW daily. At five weeks all of Group A was euthanized and studied, as was half of Group B. The second half of Group B then had their daily dosage increased to 1.3 g/kg BW for two weeks before being euthanized.

Once again, it was observed that the hypoascorbate guinea pigs had developed lesions in their arterial walls and organs, as well as increased plaque buildup and Lp(a) levels. On the same token, the second half of Group B showed decreased levels of Lp(a) in their blood and decreased amounts of plaque after their ascorbate intake was dramatically increased.

Pauling and Rath felt that their research was confirming their hypothesis, and wanted to see how it would function on humans. Their method here was to obtain post-mortem pieces of human arterial wall. They cut the pieces into smaller sections, and for one minute placed a piece weighing 100 mg into a glass potter containing 2.5 ml of a mixture of ascorbate and tranexamic acid. Compared to the other pieces, the portions in the mixture released sizable amount of Lp(a).

This promising data in hand, Pauling and Rath then began to think about patenting and marketing their work.

Filed under: Orthomolecular MedicinePatents | Tagged: , | Leave a Comment »

Lipoprotein(a) Patents

Posted on January 16, 2013 by scarc

Promotional literature for the Linus Pauling Heart Foundation, ca. 1992.

Promotional literature for the Linus Pauling Heart Foundation, ca. 1992.

[Part 2 of 2]

With the results of their Lipoprotein(a) [LP(a)] experiments in hand, Linus Pauling and Matthias Rath decided to create a treatment and try to patent it. Their treatment relied on three main ideas: First, that increased Vitamin C levels in the bloodstream would prevent the creation of lesions to which Lp(a) might bind. Second, that lipoprotein binding inhibitors would detach any plaque that had already built up. And lastly, that Vitamin C would then also help the body to filter out Lp(a). In this way, it could be used to both treat and prevent cardiovascular disease (CVD) and other related cardiovascular problems.

The duo also saw great potential use for their research in surgery – specifically angiopathy, bypass surgery, organ transplantation, and hemodialysis. Lysine or other similar chemicals naturally help to speed the healing process and also act as blood clotting agents, therefore reducing the risk of blood loss during surgery. Also, patients undergoing organ transplant surgery, bypass surgery, and hemodialysis often suffer strong recurrences of CVD, which Pauling and Rath felt was due to depleted Vitamin C levels from blood loss. Similarly, diabetics often suffer from both inhibited Vitamin C absorption and higher levels of Lp(a), leading Pauling and Rath to hope that their work could help to treat diabetes-related CVD as well.

When living patients were using their treatment, the mixture was designed to be taken orally in pill or liquid form, or injected intravenously. Pauling also wondered if the mixture could be taken subcutaneously (injected into the deepest level of skin), percutaneously (injected into internal organs), or intramuscularly (injected into the muscle). When being used as preparation for transplant surgery, the organs to be transplanted were to be soaked in the mixture. Later research done by other scientists showed that Vitamin C is not absorbed into the bloodstream like it was thought, and that there are specific Vitamin C carrier molecules in the digestive tract, therefore limiting the amount of Vitamin C a person can absorb when taken orally. As such, injection is a much more effective method of getting Vitamin C into the bloodstream.

Pauling and Rath’s work was polarizing, if not unprecedented. As far back as the early 1970s, enthusiastic support for Vitamin C by Pauling and others had been a point of extreme controversy. Now, even with this latest batch of research, many scientists and doctors seemed to think that their conclusions were grossly incorrect, and in some cases even dangerous for people. Pauling, Rath, and their supporters felt that the harsh criticism emerged, at least in part, from pharmaceutical companies concerned about losing revenue if people stopped buying their expensive medications and instead bought inexpensive, common Vitamin C. On the flip side, many of the people who felt that their research was correct were absolutely steadfast in their support.

The controversy surprised Pauling. He repeatedly expressed these feelings, pointing out that he was not the first to make claims about the benefits of Vitamin C nor even the most extreme, and yet he was viewed as a controversial figure espousing fringe medicine. The Pauling-Rath team was not the only organization researching and promoting the positive effects of Vitamin C. Other groups, such as that led by Dr. Valentin Fuster of Harvard Medical School, were conducting similar experiments. Pauling and Rath attempted to collaborate with them where possible, often with success. But more generally the duo had to rely heavily upon individual case histories to support their research, largely because they were unable to convince major American institutions to conduct their own studies or to sponsor the Linus Pauling Institute of Science and Medicine’s studies.

Figure 1 from Pauling and Rath's July 1990 patent application.

Figure 1 from Pauling and Rath’s July 1990 patent application.

On July 27, 1993, Pauling and Rath were awarded a patent for the application filed in April 1990. On January 11, 1994, they received a second patent for the application filed in July 1990. Shortly afterward, in March 1994, the two filed a third application, following similar grounds, titled “Therapeutic Lysine Salt Composition and Method of Use.” The compound they were patenting was a mixture of ascorbate, nicotinic acid (also known as Vitamin B3 or niacin) and lysine, or a lysine derivative. The mixture was to be combined at a ratio of 4:1:1, and include a minimum of 400 mg of ascorbate, 100 mg niacin and 100 mg lysine. The mixture functioned more or less identically to the previous two patents, the major difference being the inclusion of Vitamin B3 for its antioxidant properties. Pauling and Rath also encouraged the inclusion of additional antioxidant vitamins.

This was the last patent that Pauling and Rath would file together. Shortly afterward the two experienced a falling out and Rath left LPISM.  A few months later, on August 19, 1994, Linus Pauling passed away from cancer.

The third patent application was approved and awarded to Pauling and Rath in 1997. The two hadn’t made any profit off of the previous patents to speak of, and research that followed in the later 1990s and after 2000 showed that Vitamin C appeared to have no real effect on Lp(a). The discrepancy between the Pauling-Rath trials and subsequent tests seem to be attributable to the major differences between the two test subjects – humans and guinea pigs. However, other trials have shown that large doses of Vitamin C are useful in fighting cardiovascular disease – for reasons other than Lp(a) levels – and also work to combat stroke, decrease blood pressure and provide other health benefits.

Additional studies in the wake of Pauling and Rath have also revealed the complexity of Lp(a).  The compound is today regarded to be somewhat of a mystery in terms of function, as scientists aren’t very clear on what it does in the human body. Also, “normal” levels of Lp(a) vary massively on an individual basis, a trait that seems to trend along racial lines. As a result, choosing Lp(a) as a target for medication has proven to be extremely difficult.

SOURCE:

http://paulingblog.wordpress.com/tag/vitamin-c/

http://paulingblog.wordpress.com/tag/lipoproteina/

Other articles  on  were published on Lipoprotein(a) On Vitamin C on this Open Source Online Scientific Journal

Exploring the role of vitamin C in Cancer therapy

https://pharmaceuticalintelligence.com/2013/01/15/exploring-the-role-of-vitamin-c-in-cancer-therapy/

 

Special Considerations in Blood Lipoproteins, Viscosity, Assessment and Treatment

https://pharmaceuticalintelligence.com/2012/11/28/special-considerations-in-blood-lipoproteins-viscosity-assessment-and-treatment/

 

What is the role of plasma viscosity in hemostasis and vascular disease risk?

https://pharmaceuticalintelligence.com/2012/11/28/what-is-the-role-of-plasma-viscosity-in-hemostasis-and-vascular-disease-risk/

 

Assessing Cardiovascular Disease with Biomarkers

https://pharmaceuticalintelligence.com/2012/12/25/assessing-cardiovascular-disease-with-biomarkers/

 

Artherogenesis: Predictor of CVD – the Smaller and Denser LDL Particles

https://pharmaceuticalintelligence.com/2012/11/15/artherogenesis-predictor-of-cvd-the-smaller-and-denser-ldl-particles/

Advertisements

Read Full Post »