Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Low-density lipoprotein’


Artherogenesis: Predictor of CVD – the Smaller and Denser LDL Particles

Reporter: Aviva Lev-Ari, PhD, RN

Updated 3/5/2013

Genetic Associations with Valvular Calcification and Aortic Stenosis

N Engl J Med 2013; 368:503-512

February 7, 2013DOI: 10.1056/NEJMoa1109034

METHODS

We determined genomewide associations with the presence of aortic-valve calcification (among 6942 participants) and mitral annular calcification (among 3795 participants), as detected by computed tomographic (CT) scanning; the study population for this analysis included persons of white European ancestry from three cohorts participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (discovery population). Findings were replicated in independent cohorts of persons with either CT-detected valvular calcification or clinical aortic stenosis.

CONCLUSIONS

Genetic variation in the LPA locus, mediated by Lp(a) levels, is associated with aortic-valve calcification across multiple ethnic groups and with incident clinical aortic stenosis. (Funded by the National Heart, Lung, and Blood Institute and others.)

SOURCE:

N Engl J Med 2013; 368:503-512

HDL is more than an eNOS Agonist

 In addition to the modulation of NO production by signaling events that rapidly dictate the level of enzymatic activity, important control of eNOS involves changes in the abundance of the enzyme. In a clinical trial by the Karas laboratory of niacin therapy in patients with low HDL levels (nine males and two females), flow-mediated dilation of the brachial artery was improved in association with a rise in HDL of 33% over 3 months (Kuvin et al., 2002).

Am. Heart J., 144:165–172.

They also demonstrated that eNOS expression in cultured human endothelial cells is increased by HDL exposure for 24 hours. They further showed that the increase in eNOS is related to an increase in the half-life of the protein, and that this is mediated by PI3K–Akt kinase and MAPK (Ramet et al., 2003).

J. Am. Coll. Cardiol., 41:2288–2297.

Thus, the same mechanisms that underlie the acute activation of eNOS by HDL appear to be operative in upregulating the expression of the enzyme.

The current understanding of the mechanism by which HDL enhances endothelial NO production is summarized in Shaul & Mineo (2004), Figure 1.

J Clin Invest., 15; 113(4): 509–513.

It describes the mechanism of action for HDL enhancement of NO production by eNOS in vascular endothelium.

(a)   HDL causes membrane-initiated signaling, which stimulates eNOS activity. The eNOS protein is localized in cholesterol-enriched (orange circles) plasma membrane caveolae as a result of the myristoylation and palmitoylation of the protein. Binding of HDL to SR-BI via apoAI causes rapid activation of the nonreceptor tyrosine kinase src, leading to PI3K activation and downstream activation of Akt kinase and MAPK. Akt enhances eNOS activity by phosphorylation, and independent MAPK-mediated processes are additionally required (Duarte, et al., 1997). Eur J Pharmacol, 338:25–33.

HDL also causes an increase in intracellular Ca2+ concentration (intracellular Ca2+ store shown in blue; Ca2+ channel shown in pink), which enhances binding of calmodulin (CM) to eNOS. HDL-induced signaling is mediated at least partially by the HDL-associated lysophospholipids SPC, S1P, and LSF acting through the G protein–coupled lysophospholipid receptor S1P3. HDL-associated estradiol (E2) may also activate signaling by binding to plasma membrane–associated estrogen receptors (ERs), which are also G protein coupled. It remains to be determined if signaling events are also directly mediated by SR-BI (Yuhanna et al., 2001), (Nofer et al., 2004), (Gong et al., 2003), (Mineo et al., 2003).

Nat. Med., 7:853–857.

J. Clin. Invest.,113:569–581.

J. Clin. Invest., 111:1579–1587.

J. Biol. Chem., 278:9142–9149.

(b)   HDL regulates eNOS abundance and subcellular distribution. In addition to modulating the acute response, the activation of the PI3K–Akt kinase pathway and MAPK by HDL upregulates eNOS expression (open arrows). HDL also regulates the lipid environment in caveolae (dashed arrows). Oxidized LDL (OxLDL) can serve as a cholesterol acceptor (orange circles), thereby disrupting caveolae and eNOS function. However, in the presence of OxLDL, HDL maintains the total cholesterol content of caveolae by the provision of cholesterol ester (blue circles), resulting in preservation of the eNOS signaling module (Ramet et al., 2003), (Blair et al., 1999), (Uittenbogaard et al., 2000).

J. Am. Coll. Cardiol., 41:2288–2297.

J. Biol. Chem., 274:32512–32519.

J. Biol. Chem., 275:11278–11283.

SOURCE:

Shaul, PW and Mineo, C, (2004). HDL action on the vascular wall: is the answer NO? J Clin Invest., 15; 113(4): 509–513.

Are Additional Lipid Measures Useful?

Ryan D. Bradley, ND; and Erica B. Oberg, ND, MPH

http://www.imjournal.com/resources/web_pdfs/recent/1208_bradley.pdf

Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are the well-established standards by which clinicians identify individuals at risk for coronary artery disease (CAD), yet nearly 50% of people who have a myocardial infarction have normal cholesterol levels. Measurement of additional biomarkers may be useful to more fully stratify patients according to disease risk. The typical lipid panel includes TC, LDL-C, high-density lipoprotein cholesterol  (HDL-C), and triglycerides (TGs). Emerging biomarkers for cardiovascular risk include measures of LDL-C pattern, size,  and density; LDL particle number; lipoprotein(a); apolipoproteins  (apoA1 and apoB100 being the most useful);  C-reactive protein; and lipoprotein-associated phospholipase

Some of these emerging biomarkers have been proven to add to, or be more accurate than, traditional risk factors in predicting coronary artery disease and, thus, may be useful for clinical decision-making in high-risk patients and in patients with borderline traditional risk factors.  However, we still believe that until treatment strategies can uniquely address these added risk factors—ie, until protocols to rectify unhealthy findings are shown to improve cardiovascular outcomes—healthcare providers should continue to focus primarily on helping patients reach optimal LDL-C, HDL-C, and TG levels

Table 1. Traditional Lipid Panel and Recommended Treatment

Goals for Cardiovascular Disease Prevention34

  • Total Cholesterol Desirable (low) < 200 mg/dL
  • Borderline high 200-239 mg/dL
  • High 240 mg/dL or greater
  • HDL Cholesterol Desirable (high) > 60 mg/dL
  • Acceptable 40-60 mg/dL
  • Low < 40 mg/dL
  • LDL Cholesterol Desirable (low) < 100 mg/dL
  • Acceptable 100-129 mg/dL
  • Borderline high 130-159 mg/dL
  • High 160-189 mg/dL
  • Very high 190 mg/dL or greater
  • Triglycerides Desirable (low) < 150 mg/dL
  • Borderline high 150-199 mg/dL
  • High 200-499 mg/dL
  • Very high 500 mg/dL or greater

LDL-C and HDL-C: Pattern, Size, and Density

Two patterns predominate and are used to describe the average size of LDL particles. Pattern A refers to a preponderance of large LDL particles, while Pattern B refers to a preponderance of small LDL particles; a minority of individuals displays an intermediate or mixed pattern. Some commercially available assays further subdivide LDL-C into 7 distinct designations based on particle size.9,10

LDL Lipoprotein Particle Number

LDL particle number (LDL-P) is a measure of the number of lipoprotein particles independent of the quantity of lipid within the cholesterol particle; ie, LDL-P measures the number of individual particles, not a concentration like LDL-C. It is measured using nuclear magnetic resonance technology and is unaffected by fasting status.21 Higher LDL-P measures have been associated with a higher risk of CAD. This might simply be because there are more particles susceptible to oxidation in circulation.

There are suggestions, but not definitive proof, that reducing LDL-P increases intra-LDL antioxidant capacity.  The European Prospective Investigation of Cancer (EPIC)-Norfolk cohort, a study that has followed 25 663 participants  (men and women aged 45-79 years) over 6 years, evaluated associations between LDL-P and risk of CAD. Compared to controls,  cases of CAD had a higher number of LDL particles (LDL-P P<.0001), smaller average LDL-particle size (P=.002), and higher concentrations of small LDL particles (P<.0001).22

Once again,  small, dense LDL-C were positively associated with TG and negatively associated with HDL.  In another study investigating incident angina and MI with LDL-P, females, but not males, had a significantly increased odds ratio for incident MI and angina for higher LDL-P—but not for LDL size—after adjustment for LDL, age, and race.  Males had increased (but not significant) point estimates showing the same relationship.23 Of note, LDL-P and non-HDL-C (ie,  TC minus HDL-C, or, specifically, LDL-C plus VLDLs), added equivalently to Framingham-predicted CAD risk stratification, thus reducing our enthusiasm for this additional measurement when TC and HDL-C are routinely available.22 Based on these results, LDL-P is becoming recognized as a more-precise measure of LDL-related risk and, as it becomes more available, is likely to replace LDL-C in risk-stratification tools. Clinical availability is currently limited; however, Medicare recently began reimbursing for regular testing of LDL-P in highrisk patients, so we should see availability increase soon. There are no novel treatments based on LDL-P at this time, and data shows therapies that lower LDL-C lower LDL-P as well.

 Apolipoproteins

Apolipoproteins are the protein components of plasma lipoproteins. Several different apolipoproteins have been identified and numbered; however, apoB48, apoB100, and apoA are the most commonly referenced.  ApoB48 is associated with LDL particles that transport dietary cholesterol to the liver for processing. ApoB100 is found in lipoproteins originating from the liver (eg, LDL and VLDL); it transports these lipoproteins and, also, TGs to the periphery. In addition, ApoB100 is involved with the binding of LDL particles to the vascular wall, implicating itself as a key player in the development of atherogenic plaques. Importantly, there is one apoB100 molecule per hepatic-derived lipoprotein. Hence, it is possible to quantify the number of LDL/VLDL particles by noting the total apoB100 concentration.

Measurement of apoB100 has been shown in nearly all studies to outperform LDL-C and non-HDL-C as a predictor of CAD events and as an index of residual CAD risk, perhaps due to differences in measurement sensitivity between measurement methodologies. Direct measurement of apolipoproteins is superior to calculated lipid measurements. Yet, currently, apoB100 measurement is more costly than routine measurements and,  because apoB100 is so closely associated with non-HDL-C (which,  as mentioned previously, can be estimated by TC minus HDL-C),  our enthusiasm for the clinical use of this test is limited.24 For its part, apoA is associated with HDL particles; the 2 major proteins in HDL are apoAI and apoAII. Of these, apoAI has more frequently been used to estimate HDL-C, but, in contrast to apoB100, apoAI is not unique to HDL and so the ratio of apoAI to HDL is not 1 to 1.24

Lipoprotein(a)

Lipoprotein(a)—Lp(a)—is attached to apoB. The association of Lp(a) with CAD and its ability to act as a biomarker of risk appears to be strongest in patients with hypercholesterolemia and, in particular, in young patients with premature atherosclerosis (males younger than 55 and females younger than 65). Part of the reason for this is the observation that there seem to be important threshold effects such that only very high Lp(a) levels (> 30 mg/dL) are associated with elevated vascular risk; in this regard, these increased plasma levels of Lp(a) independently predict the presence of CAD, particularly in patients with elevated LDL-C levels.28

In the Cardiovascular Health Study, a relative risk of approximately 3-fold for death from vascular events and stroke was seen in the highest quintile compared to the lowest quintile of Lp(a) but for males only, whereas no such relation existed for women.29 Lp(a) is commonly considered a marker for familial hypercholesterolemia. Lp(a) may best be used in assessing the risk of younger males with strong family histories of CVD but  should not be used more generally.

Risk Factors for Cardiovascular Disease

(Exclusive of LDL Cholesterol)34

  • Cigarette smoking
  • Hypertension (BP > 140/90 mmHg or on antihypertensive medication)
  • Low HDL cholesterol (< 40 mg/dL)
  • Family history of premature CHD (CHD in first-degree male relative <
  • 55 years; CHD in first-degree female relative < 65 years)
  • Age (men > 44 years; women > 54 years

In addition,

  • Clinical coronary heart disease,
  • symptomatic carotid artery disease,
  • peripheral arterial disease, or
  • abdominal aortic aneurysm

Conclusion

In the United States, treatment guidelines for high CVD risk factors are set by the National Cholesterol Education Program (NCEP) Expert Panel, which developed the third report of the Adult Treatment Panel (ATPIII).34 Treatment goals are determined according to risk stratification by LDL-C and by known additional risk factors such as smoking, low HDL, hypertension,  family history, and age. Yet, clinically, decision-making is always more complex than this. Additional risk stratification can be accomplished by measuring the biomarkers discussed above, and this may potentially provide additive benefit beyond NCEP guidelines. However, we always encourage clinicians to treat known risks to goal levels before adding additional goals for treatment. In a future article we will provide further detail on treatment options for novel biomarkers.

REFERENCES

1. No authors listed. Cardiovascular disease statistics. American Heart Association.

Available at: http://www.americanheart.org/presenter.jhtml?identifier=4478.

Accessed October 28, 2008.

2. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood

biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol.

2006;47(8 Suppl):C19-C31.

3. Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol,

and regression of coronary atherosclerosis. JAMA. 2007;297(5):499-508.

4. Hausenloy DJ, Yellon DM. Targeting residual cardiovascular risk: raising high-density

lipoprotein cholesterol levels. JAMA. 2007;297(5):499-508.

5. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with

nonfasting triglycerides and risk of cardiovascular events in women. JAMA.

2007;298(3):309-316.

6. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides

and risk of myocardial infarction, ischemic heart disease, and death in men and

women. JAMA. 2007;298(3):299-308.

7. Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, lowdensity

lipoprotein particle diameter, and risk of myocardial infarction. JAMA.

1996;276(11):882-888.

8. Ceriello A. The post-prandial state and cardiovascular disease: relevance to diabetes

mellitus. Diabetes Metab Res Rev. 2000;16(2):125-132.

9. Carmena R, Duriez P, Fruchart JC. Atherogenic lipoprotein particles in artherosclerosis.

Circulation. 2004;109(23 Suppl 1):III2-III7.

10. Dormans TP, Swinkels DW, de Graaf J, Hendriks JC, Stalenhoef AF, Demacker PN.

Single-spin density-gradient ultracentrifugation vs gradient gel electrophoresis: two

methods for detecting low-density-lipoprotein heterogeneity compared. Clin Chem.

1991;37(6):853-858.

11. Roheim PS, Asztalos BF. Clinical significance of lipoprotein size and risk for coronary

atherosclerosis. Clin Chem. 1995;41(1):147-152.

12. Swinkels DW, Demacker PN, Hendriks JC, van ‘t Laar A. Low density lipoprotein

subfractions and relationship to other risk factors for coronary artery disease in

healthy individuals. Arteriosclerosis. 1989;9(5):604-613.

13. Tan CE, Chew LS, Chio LF, et al. Cardiovascular risk factors and LDL subfraction

profile in Type 2 diabetes mellitus subjects with good glycaemic control. Diabetes Res

Clin Pract. 2001;51(2):107-114.

14. Lamarche B, Tchernof A, Mauriège P, et al. Fasting insulin and apolipoprotein B levels

and low-density lipoprotein particle size as risk factors for ischemic heart disease.

JAMA. 1998;279(24):1955-1961.

15. St-Pierre AC, Ruel IL, Cantin B, et al. Comparison of various electrophoretic characteristics

of LDL particles and their relationship to the risk of ischemic heart disease.

Circulation. 2001;104(19):2295-2299.

16. Mora S, Szklo M, Otvos JD, et al. LDL particle subclasses, LDL particle size, and

carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA).

Atherosclerosis. 2007;192(1):211-217.

17. Singh IM, Shishehbor MH, Ansell BJ. High-density lipoprotein as a therapeutic target:

a systematic review. JAMA. 2007;298(7):786-798.

18. Lewis GF. Determinants of plasma HDL concentrations and reverse cholesterol

transport. Curr Opin Cardiol. 2006;21(4):345-352.

19. Kontush A, de Faria EC, Chantepie S, Chapman MJ. A normotriglyceridemic, low

HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL

particles with attenuated antioxidative activity. Atherosclerosis. 2005;182(2):277-285.

20. Nobécourt E, Jacqueminet S, Hansel B, et al. Defective antioxidative activity of small

dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and

hyperglycaemia. Diabetologia. 2005;48(3):529-538.

21. Dungan KM, Guster T, DeWalt DA, Buse JB. A comparison of lipid and lipoprotein

measurements in the fasting and nonfasting states in patients with type 2 diabetes.

Curr Med Res Opin. 2007;23(11):2689-2695.

22. El Harchaoui K, van der Steeg WA, Stroes ES, et al. Value of low-density lipoprotein

particle number and size as predictors of coronary artery disease in apparently

healthy men and women: the EPIC-Norfolk Prospective Population Study. J Am Coll

Cardiol. 2007;49(5):547-553.

23. Kuller L, Arnold A, Tracy R, et al. Nuclear magnetic resonance spectroscopy of lipoproteins

and risk of coronary heart disease in the cardiovascular health study.

Arterioscler Thromb Vasc Biol. 2002;22(7):1175-1180.

24. Olofsson SO, Wiklund O, Borén J. Apolipoproteins A-I and B: biosynthesis, role in

the development of atherosclerosis and targets for intervention against cardiovascular

disease. Vasc Health Risk Manag. 2007;3(4):491-502.

25. Walldius G, Jungner I. Is there a better marker of cardiovascular risk than LDL cholesterol?

Apolipoproteins B and A-I—new risk factors and targets for therapy. Nutr

Metab Cardiovasc Dis. 2007;17(8):565-571.

26. Anand SS, Islam S, Rosengren A, et al. Risk factors for myocardial infarction in

women and men: insights from the INTERHEART study. Eur Heart J.

2008;29(7):932-940.

27. McQueen MJ, Hawken S, Wang X, et al. Lipids, lipoproteins, and apolipoproteins as

risk markers of myocardial infarction in 52 countries (the INTERHEART study): a

case-control study. Lancet. 2008;372(9634):224-233.

28. Danesh J, Collins R, Peto R. Lipoprotein(a) and coronary heart disease. Metaanalysis

of prospective studies. Circulation. 2000;102(10):1082-1085.

29. Ariyo AA, Thach C, Tracy R; Cardiovascular Health Study Investigators. Lp(a) lipoprotein,

vascular disease, and mortality in the elderly. N Engl J Med.

2003;349(22):2108-2115.

30. Retterstol L, Eikvar L, Bohn M, Bakken A, Erikssen J, Berg K. C-reactive protein predicts

death in patients with previous premature myocardial infarction—a 10 year

follow-up study. Atherosclerosis. 2002;160(2):433-440.

31. Kiechl S, Willeit J, Mayr M, et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-

associated phospholipase A2 activity, and 10-year cardiovascular outcomes:

prospective results from the Bruneck study. Arterioscler Thromb Vasc Biol.

2007;27(8):1788-1795.

32. Kolko M, Rodriguez de Turco EB, Diemer NH, Bazan NG. Neuronal damage by

secretory phospholipase A2: modulation by cytosolic phospholipase A2, plateletactivating

factor, and cyclooxygenase-2 in neuronal cells in culture. Neurosci Lett.

2003;338(2):164-168.

33. Robins SJ, Collins D, Nelson JJ, Bloomfield HE, Asztalos BF. Cardiovascular events

with increased lipoprotein-associated phospholipase A(2) and low high-density lipoprotein-

cholesterol: the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb

Vasc Biol. 2008;28(6):1172-1178.

34. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in

Adults. Executive Summary of The Third Report of The National Cholesterol

Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment

of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA.

2001;285(19):2486-2497.

Other related articles on this Open Access Online Scientific Journal include the following:

Fight against Atherosclerotic Cardiovascular Disease: A Biologics not a Small Molecule – Recombinant Human lecithin-cholesterol acyltransferase (rhLCAT) attracted AstraZeneca to acquire AlphaCore

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/03/fight-against-atherosclerotic-cardiovascular-disease-a-biologics-not-a-small-molecule-recombinant-human-lecithin-cholesterol-acyltransferase-rhlcat-attracted-astrazeneca-to-acquire-alphacore/

Cholesteryl Ester Transfer Protein (CETP) Inhibitor: Potential of Anacetrapib to treat Atherosclerosis and CAD

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/07/cholesteryl-ester-transfer-protein-cetp-inhibitor-potential-of-anacetrapib-to-treat-atherosclerosis-and-cad/

Hypertriglyceridemia concurrent Hyperlipidemia: Vertical Density Gradient Ultracentrifugation a Better Test to Prevent Undertreatment of High-Risk Cardiac Patients

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/04/hypertriglyceridemia-concurrent-hyperlipidemia-vertical-density-gradient-ultracentrifugation-a-better-test-to-prevent-undertreatment-of-high-risk-cardiac-patients/

High-Density Lipoprotein (HDL): An Independent Predictor of Endothelial Function & Atherosclerosis, A Modulator, An Agonist, A Biomarker for Cardiovascular Risk

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/03/31/high-density-lipoprotein-hdl-an-independent-predictor-of-endothelial-function-artherosclerosis-a-modulator-an-agonist-a-biomarker-for-cardiovascular-risk/

 

Advertisements

Read Full Post »


Reporter: Aviva Lev-Ari, PhD, RN

 

According to The 2012 Johns Hopkins Heart Attack Prevention White Paper by Heart Experts

Roger S. Blumenthal, M.D. 

Director, Johns Hopkins Ciccarone Center for the Prevention of Heart Disease

Professor of Medicine, Johns Hopkins University School of Medicine

and

Simeon Margolis, M.D., Ph.D.

Professor of Medicine and Biological Chemistry

Johns Hopkins University School of Medicine

 

The death rate from heart attacks has been declining steadily for many years, in large part because people are receiving better medical care. Yet too many men and women are not taking the steps that could help protect them.

It’s easier than you think. But you’d be amazed how many people ignore the #1 tool for preventing a heart attack:

What really triggers a heart attack?

What you need to know sooner rather than later.

See who’s most likely to have a heart attack. You’ll learn the most common risk factors and how to minimize them. You’ll also learn the importance of primary prevention if you haven’t been diagnosed with coronary heart disease (CHD) or suffered a heart attack.

Discover the changes that take place in the coronary arteries leading up to a heart attack.

Learn what happens during a heart attack, and how the steps you take during the first hour can affect survival.

Find out why a yearly flu shot can protect your heart. You’ll learn about the importance of taming inflammation.

Learn what your waist measurement can reveal about the health of your heart.

But this is only the beginning. Learn about the standard screening tests, and the newer, potentially better alternatives being developed.

The heart-mind connection: How cognitive behavior therapy (CBT) may help ward off a heart attack

Evidence linking the flu vaccine to lower heart attack risk.

Angina: A critical warning of heart disease that should never be ignored.

Latest thinking on how ministrokes (TIAs) lead to heart attack.

Explore new technologies that are now available to assess the health of your coronary arteries. See how the tests are done and how they compare to traditional methods of predicting future heart attacks.

You will feel far better prepared to have an intelligent conversation with your doctor about the issues that concern you most.

How great is your risk?

A close look at the factors that set the stage for heart attack.

Simply, clearly and accurately, the specialists at Johns Hopkins explain the major risk factors that lead to heart attack.

You will take a close look at the different types of lipids. Understand cholesterol’s role in your body… the difference between “good” HDL and “bad” LDL cholesterol… why reducing cholesterol levels can help prevent coronary heart disease and heart attacks… how triglycerides differ from the other lipids.

You will see how inflammation and C-reactive protein are associated with risk of heart disease and heart attack. Examine the role of blood clots and coronary artery spasms in triggering heart attacks.

You will learn which risk factors (like age and family history) can’t be changed, although knowing about them can motivate you to take the preventive steps that can LOWER your risk of heart attack.

More important you will learn which risk factors are within your control. You’ll be able to set clear, practical goals for yourself with guidance from Johns Hopkins specialists. And you’ll discover what to do if you have risk factors like high blood pressure, abdominal obesity or metabolic syndrome working against you.

Learn the MOST IMPORTANT STEPS After a Heart Attack —

Steps That Could SAVE YOUR LIFE

A special feature in The 2012 Johns Hopkins Heart Attack Prevention White Paper details essential steps you should take if you experience the warning signs of a heart attack.

Let us assure you, there is no more powerful motivator to get your cholesterol, your blood pressure and your weight under control than the threat of undergoing a heart attack sometime in the future.

This is just one of many reasons to order your own copy of The 2012 Johns Hopkins Heart Attack Prevention White Paper and start putting it to good use right away.

Direct to you from Johns Hopkins Medicine

Since 1889, Johns Hopkins researchers have advanced the development of science and medicine, quickly transferring new knowledge from the research laboratory to the patient’s bedside. The School of Medicine is the largest recipient of biomedical research funds from the National Institutes of Health, and in 2003, Johns Hopkins University’s own Peter Agre, M.D., won the Nobel Prize in chemistry.

The White Papers give Johns Hopkins an effective, affordable way to extend new knowledge to the widest possible audience, benefiting countless men and women with serious medical concerns.

When it comes to the health of your heart, you should insist on knowing where your information comes from. Check the credentials of the experts who advise you before you decide whether they are worthy of your trust.

The 2012 Johns Hopkins Heart Attack Prevention White Paper draws on the vast resources and experience of The Johns Hopkins Hospital and the Johns Hopkins Ciccarone Center for the Prevention of Heart Disease. It gives Johns Hopkins specialists a forum to explore the combination of lifestyle adjustments and medical therapies that can slow the progression of heart disease and decrease your risk of heart attack or stroke.

Prepared by two of the most respected experts in the field

You can trust what you read in The 2012 Johns Hopkins Heart Attack Prevention White Paper. Coauthor Roger S. Blumenthal, M.D., is Professor of Medicine in the Division of Cardiology at The Johns Hopkins Hospital and the Director of the Johns Hopkins Ciccarone Center for the Prevention of Heart Disease. His interests include the development of new strategies to manage coronary heart disease risk factors and the noninvasive detection of coronary atherosclerosis.

Co-author Simeon Margolis, M.D., Ph.D., is Professor of Medicine and Biological Chemistry at the Johns Hopkins University School of Medicine and the medical editor of The Johns Hopkins newsletter, Health After 50.

Their impeccable credentials and reputations ensure that what you read is responsible, practical and useful in your quest for a healthier heart.

You can also be sure that it reflects the latest scientific research and clinical findings.

The expertise you need, in clear, plain English you can understand and use every day

The 2012 Johns Hopkins Heart Attack Prevention White Paper brings you the latest news you can use. It’s designed with YOU in mind, the busy person who has no time, money or energy to waste on old or inaccurate information, or heart attack “prevention strategies” that are really just myths or hype.

Drug-free steps to take RIGHT NOW to lower your risk of a heart attack

The right lifestyle changes can go a long way toward bringing down high blood pressure and cholesterol levels. These simple changes may be enough to let you avoid medication altogether. But if not, making a few well-chosen adjustments in your habits can boost the effectiveness of the medications you take, perhaps even reducing the dosage you require.

How to protect against heart attacks with fiber. Find out if you are getting the recommended daily amount.

What new research reveals about calcium supplements and your risk of coronary heart disease.

What about soy? Antioxidants? Limiting your sodium? Boosting your potassium intake? Learn effective ways to get your risk factors under control through the food choices you make every day.

 

What counts as “exercise?”

Do you have to break a sweat before it’s good for your heart?

You’ve heard it before: regular exercise can raise HDL cholesterol, control your weight, improve the work capacity of your heart, reduce your blood pressure and blood glucose and relieve stress.

So why is it so difficult to get up off the couch and get moving?

You’ll learn how often to exercise. Whether short bursts of activity can offer the same protection as longer exercise periods when it comes to reducing risk of coronary heart disease.

And you will read how to exercise safely — a must-see if you are concerned about having a heart attack or cardiac arrest during physical activity.

“Alcohol to protect my heart? I’ll drink to that!”

Should you? Will drinking alcoholic beverages really lower your risk of heart attack, as the headlines proclaim? The 2012 Johns Hopkins Heart Attack Prevention White Paper looks at how a small amount of alcohol can help raise “good” HDL cholesterol. Discover what the research says is “enough” alcohol to reduce your risk of heart attack, and what’s “too much.”

See your heart’s health in a whole new way

Because solid, authoritative medical research stands behind the recommendations of Johns Hopkins Medicine, each White Paper includes highlights of new studies that are relevant to you.

When you have The 2012 Johns Hopkins Heart Attack Prevention White Paper, you have the power to affect your health care as never before. Use what you learn to:

Recognize and respond to symptoms and significant changes in your heart health as they occur.

Make conscious, deliberate choices in what you eat and drink and do, based on what is known to lower the risk of cardiovascular disease.

Communicate effectively with your doctor. A helpful glossary takes the mystery out of “medical-speak.” Words like ischemia and ejection fraction will lose their power to intimidate or confuse you.

You will be better equipped to ask informed questions and to understand the answers.

Make the right decisions, based on a better understanding of the newest drugs, the latest surgical techniques and the most promising research.

Take control over your condition and act out of knowledge, rather than fear.

 

Who will benefit from this timely intelligence?

The fact that you are reading this suggests that you’re not willing to leave your fate in others’ hands. You want to know more. You need to know more. And you’re willing to seek out the best and most current information so you can raise important issues with your own doctors.

The 2012 Johns Hopkins Heart Attack Prevention White Paper will prove valuable to you if any of the following criteria describe your personal situation.

You are being treated for high cholesterol or high blood pressure or have other cardiovascular risk factors such as diabetes, smoking, obesity or a sedentary lifestyle.

You have a family history of heart disease and want to break the pattern.

You want to reduce the likelihood of needing bypass surgery or other invasive procedures.

You have already had a heart attack and want to avoid a second one.

You realize that first heart attacks often prove fatal to women because the early warning signs — which are different from men’s — may be misunderstood or ignored.

You live with or care for someone with cardiovascular risk factors and want to do everything possible to prevent a heart attack.

 

The specialists at Johns Hopkins created The 2012 Johns Hopkins Heart Attack Prevention White Paper to serve as your first line of defense against a heart attack. Special Bonus: Place your order today and we will include a free gift that could, literally, save your life.

 

The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease takes a comprehensive approach to the management of heart health. In the FREE Special Report that you can download when you pay now for The 2012 Johns Hopkins Heart Attack Prevention White Paper, the experts share practical, specific advice on how you can slow the progression of cardiovascular disease and decrease your future risk of heart attack, stroke, bypass surgery or angioplasty.

What you need to know is yours free in Tested, Proven Ways To Save Your Heart. It’s our gift to you, when you order and pay by credit card… yours to keep and use even if you decide to return The 2012 Johns Hopkins Heart Attack Prevention White Paper for any reason.

 

 

FREE Heart Attack Prevention Special Report: 

Tested, Proven Ways To Save Your Heart

Heart Attack Prevention Strategies

The #1 Way to Prevent a Heart Attack 

The importance of smoking cessation cannot be underestimated.

Walking Your Way to a Healthier Heart 

Johns Hopkins specialists outline the best ways for starting a walking program to maximize your heart health.

Action Plan When a Heart Attack Strikes 

The crucial symptoms to look out for (which can often be different in men and inAs you wi women) and what to do and NOT do if you or a loved one starts to show the telltale signs.

Cholesterol Busting Foods

The latest research on stanols, sterols, soy, fiber, and more.

A Drink a Day for Heart Health?

Moderate alcohol intake has been suggested as a way to ward off heart attack. This special report discusses the pros and cons.

 

You’ll get BOTH — The 2012 Johns Hopkins Heart Attack Prevention White Paper mailed to you and your free Special Report as an instant electronic download, all for only $19.95 plus shipping and handling.

YOUR FREE GIFT shows you how to walk your way to a healthier heart. Yes, you’ve heard it again and again: Walking is a good way to protect your heart. Everyone knows how to do it. It doesn’t cost anything, and you don’t need special equipment other than the right shoes.

Do you know what a group of men did to lower their risk of coronary heart disease by 18 percent? Tested, Proven Ways to Save Your Heart reveals their winning walking approach that yielded big benefits. You will also discover:

A safe way to get started, and what’s “enough” exercise to give you the heart protection you’re after.

Is faster better? How to set a healthy pace for maximum cardiovascular benefit, and warning signs that you’re pushing too hard.

How to determine your “target” heart rate zone so your walks give you significant cardiovascular benefits.

The walking style that boosts your calorie burning by up to 10 percent.

How to make your walking plan work with the weather and your lifestyle.

Cool-down stretches that keep you from feeling sore afterward.

 

And so much more!

But walking is just the beginning. Your free copy of Tested, Proven Ways To Save Your Heart gives you a truly effective way to conquer your heart’s worst enemy. Despite everything the public has been taught for the last 40 years about the dangers of tobacco, cigarette smoking is responsible for about 440,000 premature deaths each year in the United States.

Smoking, or living with a smoker, can undermine your best efforts to achieve a healthy heart. Only 5 to 10 percent of people successfully quit on their own, which is why the information in this free gift is so essential. Based on vast clinical experience and knowledge of the full range of medications and techniques to help you quit, Johns Hopkins doctors give you tools that raise your chances of quitting for good.

Learn the three things that, if used in combination, give you a far greater likelihood of kicking the habit.

The latest scientific thinking on nicotine replacement gum, skin patches, nasal sprays and inhalers.

Who’s a candidate for the medications that can help reduce cravings and withdrawal symptoms.

Tips for people who have tried (perhaps many times) before without lasting success.

Why avoiding alcohol can help you avoid cigarettes…

 

and so much more…

The sooner you take steps to reduce your heart attack risk, the better. Prevention remains your most powerful medicine. But knowing how to respond in an emergency-whether it involves you or someone you are with-can be crucial to survival.

When heart attack strikes…

be prepared with a fast and appropriate response.

As you will learn in your free copy of Tested, Proven Ways To Save Your Heart, what you do and what you don’t do during the first crucial minutes and hours following a heart attack can make all the difference in the outcome.

Did you know that a third of all people having a heart attack never experience any chest pain at all? Your Johns Hopkins-designed “Action Plan When a Heart Attack Strikes” alerts you to the range of warning signs, including the less common ones that are more likely to occur in women.

At what point should you call an ambulance? When are you better off driving the person to the hospital instead of waiting for the ambulance to arrive? What information must the emergency personnel have right away? How do you handle the person in denial, who insists, “You’re overreacting” or “There’s nothing wrong?”

I hope you never need to use this information at all. But you’ll be much better prepared to respond calmly and effectively when you have your free gift, Tested, Proven Ways To Save Your Heart, on hand.

SOURCE:

http://www.johnshopkinshealthalerts.com/contact_us/

 

Read Full Post »


Cardiovascular Risk Inflammatory Marker: Risk Assessment for Coronary Heart Disease and Ischemic Stroke – Atherosclerosis

Reporter: Aviva Lev-Ari, PhD, RN

 

Updated on 10/3/2018

Treatment concentration of high-sensitivity C-reactive protein

Published:November 13, 2017DOI:https://doi.org/10.1016/S0140-6736(17)32865-9

Interleukin 1β has multiple potential mechanisms that contribute to the pathogenesis of atherothrombotic cardiovascular disease.

Induction of interleukin 6 leads to the release of acute phase reactants including hsCRP. Thus, hsCRP serves as a surrogate marker of the overall inflammatory milieu,

often in situations where patients have multiple co-morbidities,

with a cumulative dose-response indicating a higher risk.

References

  • Ridker PM
  • Everett BM
  • Thuren T
  • et al.
Antiinflammatory therapy with canakinumab for atherosclerotic disease.

N Engl J Med. 2017; 3771119-1131

  • Libby P
Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond.

J Am Coll Cardiol. 2017; 702278-2289

  • Pokharel Y
  • Sharma PP
  • Qintar M
  • et al.
High-sensitivity C-reactive protein levels and health status outcomes after myocardial infarction.

Atherosclerosis. 2017; 26616-23

  • Wang A
  • Liu J
  • Li C
  • et al.
Cumulative exposure to high-sensitivity C-reactive protein predicts the risk of cardiovascular disease.

J Am Heart Assoc. 2017; 6e005610

    • Ridker PM
    • MacFadyen JG
    • Everett BM
    • et al.

on behalf of the CANTOS Trial Group

Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial.

Lancet. 2017; (published online Nov 13.)

SOURCE

 

 

 

 

Cardiovascular Risk Inflammatory Marker: Risk Assessment for Coronary Heart Disease and Ischemic StrokeAtherosclerosis.

 

Watch VIDEO

webinar

Lp-PLA2 Overview Webinar

Source: http://www.plactest.com/healthcare/webinar

Watch VIDEO

 american-heart-association-2007-lppla2-highlights

American Heart Association 2007 Lp-PLA2 Presentation

Source: http://www.plactest.com/healthcare/american-heart-association-2007-lppla2-highlights

diaDexus’s PLAC, the test measuting Lp-PLA2 as a novel and valuable cardiovascular risk inflammatory marker a vascular-specific inflammatory marker implicated in the formation of rupture-prone plaque, and is the only blood test cleared by the FDA to assess risk for coronary heart disease and ischemic stroke associated with atherosclerosis. (2003 and in 2005 received additional clearance as an aid in the assessment of risk for ischemic stroke associated with atherosclerosis.)

 

In 2007 the PLAC Test was granted a Category I CPT Code (83698) by the American Medical Association and is reimbursed by the Centers for Medicare and Medicaid Services (CMS) with a National Limitation Amount (NLA) of $47.77 in the 2011 CMS Clinical Laboratory Fee Schedule.

In July 2010, diaDexus completed a reverse merger with VaxGen. diaDexus currently trades on the OTC Bulletin Board (DDXS.OB).

 

PLAC Test is an alternative to C- Reactive Protein Test

 

The PLAC® Test is a simple blood test to detect Lp-PLA2 in the bloodstream. It is used to help predict risk for coronary heart disease and ischemic stroke associated with atherosclerosis.

 

  • The PLAC Test measures Lp-PLA2
    (lipoprotein-associated phospholipase A2), a vascular-specific inflammatory enzyme implicated in the formation of rupture-prone plaque. It is plaque rupture and thrombosis, not stenosis, that causes the majority of cardiac events.
  • A substantial body of evidence, including over 100 studies and abstracts in peer-reviewed journals and conferences, support Lp-PLA2 as a cardiovascular risk marker that provides new information, over and above traditional risk factors.
  • Consistent with ATP III and European guidelines, the PLAC Test should be used as an adjunct to traditional risk factor assessment to identify which moderate or high risk patients, as initially assessed by traditional risk factors, may actually be at higher risk.
  • An elevated PLAC Test may indicate a need for more aggressive patient management.
    • 50% of cardiovascular events strike in patients with unremarkable lipid levels, highlighting the prevalence of hidden cardiovascular risk.
    • LDL-C and total cholesterol have proven not to be reliable predictors of stroke; the PLAC Test addresses this unmet clinical need.
  • Lipid lowering therapies, including statins, are proven to reduce cardiovascular events regardless of baseline LDL-C levels.

 

Basic Science of Lp-PLA2

The PLAC® Test measures Lp-PLA2 (lipoprotein-associated phospholipase A2) a vascular-specific inflammatory enzyme implicated in the formation of rupture-prone plaque. It is plaque rupture and thrombosis that cause the majority of cardiac events, not stenosis.

 

 

 

 

Lp-PLA2 is a calcium-independent serine lipase that is associated with both low-density lipoprotein (LDL) and, to a lesser extent, high-density lipoprotein (HDL) in human plasma and serum and is distinct from other phospholipases such as cPLA2 and sPLA2. Lp-PLA2 is produced by macrophages and other inflammatory cells and is expressed in greater concentrations in advanced atherosclerotic lesions than early-stage lesions.

 

Lp-PLA2 has demonstrated modest intra- and inter-individual variation, commensurate with other cardiovascular lipid markers and substantially less than C-reactive protein (CRP). In addition, Lp-PLA2 is not elevated in systemic inflammatory conditions, and may be a more specific marker of vascular inflammation. The relatively small biological variation of Lp-PLA2 and its specificity are of value in the detection and monitoring of cardiovascular risk.

SOURCE:

http://www.plactest.com/healthcare/basic-science.html

 

 

Clinical Utility of the PLAC Test

 

The PLAC® Test Measures Lp-PLA2, a Unique Marker  
The PLAC Test for Lp-PLA2 is the only blood test cleared by the FDA to aid in assessing risk for both coronary heart disease and ischemic stroke associated with atherosclerosis. The PLAC Test measures lipoprotein-associated phospholipase A2 (Lp-PLA2), a vascular-specific biomarker implicated in the formation of rupture-prone plaque. The majority of all heart attacks and strokes are caused by plaque rupture and thrombosis (clots) – not stenosis (narrowing of arteries).

Lp-PLA2 is a unique marker for vascular-specific inflammation and is produced by macrophages in inflamed plaque. Lp-PLA2 provides additive risk information when combined with other markers such as hs-CRP to help you personalize your treatment options, beyond the limitations of the traditional cardiovascular (CV) risk factors.

The PLAC Test Helps Identify Hidden Risk
Lp-PLA2 is an independent risk marker for stroke. At every level of blood pressure, an Lp-PLA2 value above the median almost doubles the risk for stroke.  Current stroke guidelines include consideration of Lp-PLA2 measurement in asymptomatic patients to identify those who may be at increased risk of stroke.

The PLAC Test Helps Improve Patient Management 
Periodic measurement of the amount of Lp-PLA2 in the blood for patients with 2 or more CVD risk factors can aid clinical decisions for at-risk patients, allowing you to assess or reassess the effect of lipid lowering therapies on vascular inflammation, intensify therapeutic lifestyle changes, and reinforces doctors’ recommendations for patient management.

 

 

 

 

Essential Information to Guide Treatment

In accordance with ATP III Guidelines, patients with 2 or more CV risk factors may be candidates for advanced lipid testing.

Measure the amount of Lp-PLA2 in your patient’s blood stream with the PLAC Test to determine whether they may be at increased risk for heart attack or stroke.

If the PLAC Test results are 200 ng/mL or greater, cardiovascular disease may be present. Review your patient’s advanced lipid panel results to determine where more aggressive patient management may be needed.

 

* additional reduction of Lp-PLA2 seen when added to statin therapy.

Based on:

Shalwitz R, et al. ATVB Annual Mtg. 2007.

Kuvin J, et al. Am J Cardiol. 2006.

Albert M, et al. Atherosclerosis 2005.

Schaefer EJ, et al. Am J Cardiol. 2005.

Saougos VG, et al. ATVB 2007.

Muhlestein JB, et al. JACC 2006.

      Early detection and more aggressive treatment can help prevent cardiovascular events.


 

SOURCE:

http://www.plactest.com/Default.aspx?PageID=4620488&A=PrinterView

 

 

REFERENCES

 

Pathophysiology and Genetics Studies

 

A Twin Study of Heritability of Plasma Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Mass and ActivityLenzini L, Antezza K, Caroccia B, Wolfert RL, Szczech R, Cesari M, Narkiewicz K, Williams CJ, Rossi GP. A Twin Study of Heritability of Plasma Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Mass and Activity. Atherosclerosis. 2009; 205(1): 181-5.

Enhanced Expression of Lp-PLA2 and Lysophosphatidylcholine in Symptomatic Carotid Atherosclerotic PlaqueMannheim D, Herrmann J, Versari D, Gössl M, Meyer FB, McConnell JP, Lerman LO, Lerman A. Enhanced Expression of Lp-PLA2 and Lysophosphatidylcholine in Symptomatic Carotid Atherosclerotic Plaque. Stroke. 2008; 39: 1448-55.

Expression of Lipoprotein-Associated Phospholipase A2 in Carotid Artery Plaques Predicts Long-term Cardiac OutcHerrmann J, Mannheim D, Wohlert C, Versari D, Meyer FB, McConnell JP, Gössl M, Lerman LO, Lerman A. Expression of Lipoprotein-Associated Phospholipase A2 in Carotid Artery Plaques Predicts Long-term Cardiac Outcome. Eur. Heart J. 2009 Dec; 30(23): 2930-8.

Lipoprotein-Associated Phospholipase A2 is an Independent Marker for Coronary Endothelial Dysfunction in HumansYang EH, McConnell JP, Lennon RJ, Barsness GW, Pumper G, Hartman SJ, Rihal CS, Lerman LO, Lerman A. Lipoprotein-Associated Phospholipase A2 is an Independent Marker for Coronary Endothelial Dysfunction in Humans. Arterioscler Thromb Vasc Biol. 2006; 26(1): 106-11.

Lipoprotein-Associated Phospholipase A2 Protein Expression in the Natural Progression of Human Coronary AtherosclerosisKolodgie FD, Burke AP, Skorija KS, Ladich E, Kutys R, Makuria AT, Virmani R. Lipoprotein-Associated Phospholipase A2 Protein Expression in the Natural Progression of Human Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol. 2006; 26: 2523-9.

 

Therapeutic Modulation Studies

 

Cardiovascular Events With Increased Lipoprotein-Associated Phospholipase A2 and Low High-Density Lipoprotein-Cholesterol. The Veterans Affairs HDL Intervention Trial.Robins SJ, Collins D, JJ, Bloomfield HE, Asztalos BF. Cardiovascular Events With Increased Lipoprotein-Associated Phospholipase A2 and Low High-Density Lipoprotein-Cholesterol. The Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2008; 28(6): 1172-8.

Changes in Lp-PLA2 activity in secondary prevention predict coronary events and treatment effect by pravastatin in long term intervention with pravastatin in ischemic disease (LIPID) TrialWhite HD, Simes J, Barnes, E et al. Changes in Lp-PLA2 activity in secondary prevention predict coronary events and treatment effect by pravastatin in long term intervention with pravastatin in ischemic disease (LIPID) Trial. Circulation, abstract 14857, AHA 2011

Differential Effect of Hypolipidemic Drugs on Lipoprotein-Associated Phospholipase A2Saougos VG, Tambaki AP, Kalogirou M, Kostapanos M, Gazi IF, Wolfert RL, Elisaf M, Tselepis AD. Differential Effect of Hypolipidemic Drugs on Lipoprotein-Associated Phospholipase A2. Arterioscler Thromb Vasc Biol. 2007; 27: 2236-43.

Effects of Atorvastatin Versus Other Statins on Fasting and Postprandial C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 in Patients With Coronary Heart Disease Versus Control SubjectsSchaefer EJ, McNamara JR, Asztalos BF, Tayler T, Daly JA, Gleason JL, Seman LJ, Ferrari A, Rubenstein JJ. Effects of Atorvastatin Versus Other Statins on Fasting and Postprandial C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 in Patients With Coronary Heart Disease Versus Control Subjects. Am J Cardiol. 2005; 95: 1025-32.

Effects of Extended-Release Niacin on Lipoprotein Particle Size, Distribution, and Inflammatory Markers in Patients With Coronary Artery DiseaseKuvin JT, Dave DM, Sliney KA, Mooney P, Patel AR, Kimmelstiel CD, Karas RH. Effects of Extended-Release Niacin on Lipoprotein Particle Size, Distribution, and Inflammatory Markers in Patients With Coronary Artery Disease. Am J Cardiol. 2006; 98: 743-5.

Cardiovascular Events With Increased Lipoprotein-Associated Phospholipase A2 and Low High-Density Lipoprotein-Cholesterol. The Veterans Affairs HDL Intervention Trial.Robins SJ, Collins D, JJ, Bloomfield HE, Asztalos BF. Cardiovascular Events With Increased Lipoprotein-Associated Phospholipase A2 and Low High-Density Lipoprotein-Cholesterol. The Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2008; 28(6): 1172-8.

Changes in Lp-PLA2 activity in secondary prevention predict coronary events and treatment effect by pravastatin in long term intervention with pravastatin in ischemic disease (LIPID) TrialWhite HD, Simes J, Barnes, E et al. Changes in Lp-PLA2 activity in secondary prevention predict coronary events and treatment effect by pravastatin in long term intervention with pravastatin in ischemic disease (LIPID) Trial. Circulation, abstract 14857, AHA 2011

Differential Effect of Hypolipidemic Drugs on Lipoprotein-Associated Phospholipase A2Saougos VG, Tambaki AP, Kalogirou M, Kostapanos M, Gazi IF, Wolfert RL, Elisaf M, Tselepis AD. Differential Effect of Hypolipidemic Drugs on Lipoprotein-Associated Phospholipase A2. Arterioscler Thromb Vasc Biol. 2007; 27: 2236-43.

Effects of Atorvastatin Versus Other Statins on Fasting and Postprandial C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 in Patients With Coronary Heart Disease Versus Control SubjectsSchaefer EJ, McNamara JR, Asztalos BF, Tayler T, Daly JA, Gleason JL, Seman LJ, Ferrari A, Rubenstein JJ. Effects of Atorvastatin Versus Other Statins on Fasting and Postprandial C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 in Patients With Coronary Heart Disease Versus Control Subjects. Am J Cardiol. 2005; 95: 1025-32.

Effects of Extended-Release Niacin on Lipoprotein Particle Size, Distribution, and Inflammatory Markers in Patients With Coronary Artery DiseaseKuvin JT, Dave DM, Sliney KA, Mooney P, Patel AR, Kimmelstiel CD, Karas RH. Effects of Extended-Release Niacin on Lipoprotein Particle Size, Distribution, and Inflammatory Markers in Patients With Coronary Artery Disease. Am J Cardiol. 2006; 98: 743-5.

Cardiovascular Events With Increased Lipoprotein-Associated Phospholipase A2 and Low High-Density Lipoprotein-Cholesterol. The Veterans Affairs HDL Intervention Trial.Robins SJ, Collins D, JJ, Bloomfield HE, Asztalos BF. Cardiovascular Events With Increased Lipoprotein-Associated Phospholipase A2 and Low High-Density Lipoprotein-Cholesterol. The Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2008; 28(6): 1172-8.

Changes in Lp-PLA2 activity in secondary prevention predict coronary events and treatment effect by pravastatin in long term intervention with pravastatin in ischemic disease (LIPID) TrialWhite HD, Simes J, Barnes, E et al. Changes in Lp-PLA2 activity in secondary prevention predict coronary events and treatment effect by pravastatin in long term intervention with pravastatin in ischemic disease (LIPID) Trial. Circulation, abstract 14857, AHA 2011

Differential Effect of Hypolipidemic Drugs on Lipoprotein-Associated Phospholipase A2Saougos VG, Tambaki AP, Kalogirou M, Kostapanos M, Gazi IF, Wolfert RL, Elisaf M, Tselepis AD. Differential Effect of Hypolipidemic Drugs on Lipoprotein-Associated Phospholipase A2. Arterioscler Thromb Vasc Biol. 2007; 27: 2236-43.

Effects of Atorvastatin Versus Other Statins on Fasting and Postprandial C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 in Patients With Coronary Heart Disease Versus Control SubjectsSchaefer EJ, McNamara JR, Asztalos BF, Tayler T, Daly JA, Gleason JL, Seman LJ, Ferrari A, Rubenstein JJ. Effects of Atorvastatin Versus Other Statins on Fasting and Postprandial C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 in Patients With Coronary Heart Disease Versus Control Subjects. Am J Cardiol. 2005; 95: 1025-32.

Effects of Extended-Release Niacin on Lipoprotein Particle Size, Distribution, and Inflammatory Markers in Patients With Coronary Artery DiseaseKuvin JT, Dave DM, Sliney KA, Mooney P, Patel AR, Kimmelstiel CD, Karas RH. Effects of Extended-Release Niacin on Lipoprotein Particle Size, Distribution, and Inflammatory Markers in Patients With Coronary Artery Disease. Am J Cardiol. 2006; 98: 743-5.

 

 

 

Read Full Post »


First Lady Laura Bush sits with Lois Ingland, ...

First Lady Laura Bush sits with Lois Ingland, a heart disease survivor, during an event at the Carolinas Medical Center Wednesday, Feb. 15, 2006, in Charlotte, NC. Despite having none of the risk factors of heart disease, Lois, a mother of four, suffered a heart attack when she was 36 years old. (Photo credit: Wikipedia)

If you are hoping to lower your risk of a heart attack simply by raising your levels of “good” cholesterol—high-density lipoproteins (HDLs)—you may be disappointed. Although epidemiological studies point to HDLs as protective against heart disease, a new genetic analysis presented at the meeting shows that while high HDL might correlate with a healthier heart, it’s not itself responsible for lowering heart attack risks.

Source

Reported by: Dr. V.S.Karra, Ph.D

Read Full Post »

« Newer Posts